Article
Fichier pdf
Résumé de la production
Cet article traite de 3 “empilements” infinis composés avec un réel a>0. L'objectif est de trouver pour quelles valeurs de a ces empilements définissent bien un nombre. On modélise chaque empilement sous forme d'une suite récurrente. Pour les deux premiers empilements, construits avec la racine carrée puis comme fraction continue, on montre que la suite converge et on détermine sa limite, que l'on interprète comme la solution du problème. Pour le troisième, construit avec une suite d’exposants a, on détermine un intervalle I tel que la suite converge si a appartient à I et diverge si a est extérieur à I.
Mots clés
itération
racine carrée
fraction continue
puissance
suite récurrente
point fixe
Lecture conseillée
à partir de la terminale
- Se connecter pour publier des commentaires