Des points fixes - Lycée Saint Exupéry (Lyon) Lycée Jean Moulin (Lyon)

Établissement
Lycée Saint Exupéry (Lyon)
Année
1993-1994
Résumé
On considère une application f de {1, ..., n} dans {1, ..., n}, où n est un entier. On suppose f croissante, donc si i < j, alors f(i) ≤ f(j). ☞ Est-ce qu’il existe un entier k tel que f(k) = k ? k est appelé point FIXE. ☞ Etudier de possibles généralisations à : f : de [0, 1] dans [0, 1] dans les DÉCIMAUX, dans les RATIONNELS, dans les RÉELS. Ou toute autre généralisation ...