Article
Fichier pdf
Résumé de la production
On réalise un jeu de hasard en lançant une pièce équilibrée. On gagne 2€ si on obtient PILE et on perd 1€ si on obtient FACE. L’article établit la probabilité d’être ruiné, en fonction de n, le nombre d’euros dont on dispose initialement. Cette probabilité dépend également du nombre de parties (lancers) effectuées. Après quelques expérimentations, manuelles puis informatiques, une relation de récurrence est établie sur la probabilité de perdre, ayant n euros en main, en fonction de celle de perdre avec n+2 euros et celle de perdre avec n-1 euros. La suite qui en découle est étudiée et son terme générique est calculé via l’étude de l’équation caractéristique et ses racines. Le résultat fait apparaître le nombre d’or φ : la probabilité de perdre, en débutant avec n euros, est (1/ φ)n.
Mots clés
calcul de probabilité
suite géométrique
limite
Python
polynôme
chaîne de Markov
Lecture conseillée
à partir de la terminale
- Se connecter pour publier des commentaires