Jeu de société 2 - Lycée Blaise Pascal (Orsay)

Article
Résumé de la production
Le problème traité concerne la recherche du nombre minimum de sommets d’une grille carrée à nxn points pour lequel tout sommet de la grille est sur au moins une droite passant par deux des sommets choisis, ainsi que la disposition des sommets ainsi choisis.
L’article détermine les valeurs exactes de ce nombre minimum pour des grilles de 2, 3 et 4 sommets, ainsi qu’un encadrement dans le cas général. Le minorant est de l’ordre de grandeur de la racine carrée de n et le majorant d’un peu moins de 2n.
L’article suggère finalement un moyen d’améliorer la borne supérieure en environ n, sans toutefois le prouver.
Mots clés
combinatoire
optimisation discrète
encadrement
Lecture conseillée
à partir du lycée