Problème : avec le procédé des quintes, pour les dernières notes, on s’éloigne trop de la fondamentale (par exemple, on part d’une note de fréquence 311f pour construire notre 12ème note). Donc, pour limiter ce « danger », on peut utiliser la règle des quintes 'à l’envers'. C’est avec les deux procédés que Pythagore, pour qui tout était nombre, a construit la 1ère gamme par les mathématiques.

La « règle des quartes », c’est la règle des quintes à l’envers :

On considère que notre fondamentale est placée à une fréquence triple d'une autre note D. En multipliant la fréquence de D par 4, on obtient une note D dans notre octave. On obtient par ce procédé 12 notes, et la 13ème est très proche de la note de fréquence 2f.

COMPARAISON :

On observe ainsi que dans la construction par les quintes et celle par les quartes, les 12 notes apparaissent dans un ordre différent, mais qu’elles ont presque les mêmes fréquences dans l’ordre croissant. Voir graphique

On voit pourquoi Pythagore a utilisé les premières quintes et la première quarte pour sa gamme (il comptait les deux notes extrêmes de l'octave : par exemple, La, Si, Do, Ré ,Mi, Fa, Sol et La). D’ailleurs, la première quarte ne donne-t-elle pas la quatrième note de son octave (8 notes), et la première quinte, la cinquième note ?

 

Précédent    En voir plus ...    Suivant

Arnaud SURZUR - Romain HALBARDIER - 2000