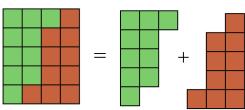
Sujet 3 - Les découpages convenables

Partie 1


On se donne un rectangle $n \times m$ de côtés entiers n, m.

On veut le découper en deux morceaux superposables, chacun composé de carrés 1×1.

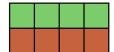
(on veut bien sûr que chaque morceau soit d'un seul tenant : chaque carré d'un morceau doit être collé au reste par au moins un côté).

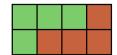
On appelle cela un découpage convenable.

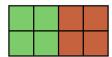
Exemple de découpage convenable :

Question 1 : Cas impossible ?

Est-ce qu'il existe toujours des découpages convenables ? Expliquer et justifier votre réponse.


Question 2 : Etude des cas simples


Trouver de combien de façons différentes on peut faire un tel découpage convenable en deux, dans le cas des rectangles les plus simples :


$$2 \times 1$$
, 2×2 , 2×3 , 2×4 , 3×4 , 4×4 , 2×5 , ...

Faire des tableaux représentant les solutions.

Exemple: Dans le cas du rectangle 2×4, il y 3 découpages convenables possibles:

Question 3:

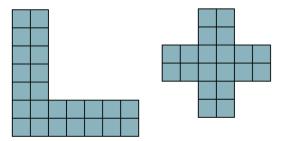
Trouver une formule générale pour les rectangles $2 \times n$ qui donne le nombre de découpages convenables. Justifier la formule par un raisonnement.

Question 4:

Etudier le cas des rectangles $3 \times n$. Je pense qu'il doit y avoir une formule donnant le nombre de découpages possibles, mais je n'en suis pas certain. À vous de faire la recherche.

Question 5

Étudier le cas des carrés $n \times n$.

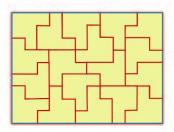

Conseil. Pour les questions 4 et 5, commencer par trouver les réponses avec n=1, n=2, n=3, n=4, n=5, ... (en faisant des dessins, de manière soigneuse et ordonnée), puis à partir des réponses trouvées, essayer : http://oeis.org/?language=french. Ce site permet de trouver des formules pour les suites dont on connaît le début. Il peut donc vous aider.

Question 6

Essayer de trouver des familles de figures autres que les rectangles pour lesquelles on arrive facilement à faire le décompte des découpages convenables.

Exemples:

- les figures "en L" avec double rangée de carrés et les deux branches du L égales.
- les figures en "croix" avec les branches de la croix composées d'une double rangée de carrés.



Question 7

Reprendre les mêmes questions, mais cette fois en découpant les formes en trois morceaux superposables chacun composés de carrés.

Question 8 [question très libre pour encourager la créativité]

Trouver des exemples intéressants de découpages d'un rectangle en k formes identiques comme cet exemple : un carré 12×9 découpé en 18 morceaux identiques (chacun composé de 6 carrés)

Rechercher des propriétés de ces découpages, rechercher des cas impossibles, etc.

Exemple de propriété :

Pour qu'un tel découpage d'un rectangle $n \times m$ en k morceaux identiques soit possible, il faut que k divise $n \times m$. (Est-ce suffisant ?).