PROBLÈME 2: TROUVER LE CODE D'UN TÉLÉPHONE

Paul reçoit pour son anniversaire un nouveau téléphone portable. Dans la boîte, il trouve un mot de ses parents avec le message suivant :

"Voici les indications dont tu auras besoin pour trouver le code à 4 chiffres de ton nouveau téléphone. Ce code est le 22-ème plus petit palindrome divisible par 33."

L'objectif de ce problème est d'aider Paul à trouver le code de son nouveau téléphone.

PARTIE 1. PREMIERS PAS AVEC LES PALINDROMES

DÉFINITION. Un nombre palindrome est un nombre qui se lit indifféremment de gauche à droite ou de droite à gauche.

1. Donner des exemples de palindromes à 2 chiffres, à 3 chiffres, à 4 chiffres et à 5 chiffres.

2. Palindromes à 3 chiffres

- (a) Quel est le palindrome à 3 chiffres le plus petit? Le plus grand?
- (b) Combien y-a-t-il de palindromes à 3 chiffres?

3. Palindromes à 4 chiffres

- (a) Quel est le palindrome à 4 chiffres le plus petit? Le plus grand?
- (b) Combien y-a-t-il de palindromes à 4 chiffres? Que remarque-t-on?
- 4. **Palindromes à** *N* **chiffres** Soit *N* un entier naturel supérieur ou égale à 2. Combien y-a-t-il de palindromes à *N* chiffres?

PARTIE 2. DIVISIBILITÉ PAR 11

Soit N un nombre pair. On considère un palindrome à N chiffres. Montrer que ce nombre est divisible par 11.

PARTIE 3. QUEL EST LE CODE?

Quel est le code du téléphone de Paul?

PARTIE 4. NOMBRES DE LYCHREL

On étudie l'algorithme suivant :

- Choisir un entier naturel N.
- Ajouter ce nombre à son écriture inversée.
- Répéter ces étapes jusqu'à obtenir un nombre palindrome.

Question: Cet algorithme se termine-t-il? Autrement dit, existe-t-il au moins un nombre qui, lorsqu'il est soumis à l'algorithme ci-dessus, ne semble jamais atteindre un palindrome?