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THE CLOCK PROBLEM

Liceo Scientifico “M. Casagrande”, Pieve di Soligo, Treviso — Italy

Abstract

The aim of the article is to study the angles that the clock hands form.

We will describe which angle the two clock hands form in a determined hour during the day and
then we will analyze some particular situation.

Then, starting from the clock problem, we will study the planetary motion, we will find out the
angular position and the time at which it would be more advantageous to launch a spaceship from
one planet to reach another one with the shortest possible distance.

Finally we will propose the results of two simulations concerning the Solar System using Unity.
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Chapter 1

Introduction

Our research was born from the study of the angles that the clock hands form.

We asked ourselves which angle the two clock hands form in a determined hour during the
day and then we analyzed some particular situation.

Finally we thought a clock as a model to study the planetary motion, starting form the clock
problem we focused on the angular position and the time at which it would be more advantageous
to launch a spaceship from one planet (i.e. the Earth) to reach another one (i.e. Mars) with the
shortest possible distance. Another problem that we treated was the one regarding the trajectory
of the midpoint between Mars and the Earth.

In the last Chapter we created two simulations concerning the Solar System using Unit.



Chapter 2

Angles between the clock hands

Let’s calculate the clock hands’ angular speed:

2 T
= = — i for the h lock h
WH =m0 = = 35 rad/min or the hours clock hand
27 T . .
Wy = — = — rad/min for the minutes clock hand
60min 30
2
wg = F = 27 rad/min for the seconds clock hand
1min

Let’s now look for the functions which express the angle variation over time between two clock
hands. To do this we searched the meeting times of each couple of clock hands. Starting from an
overlaped situation we observed that the clock hands don’t match during the first revolution of
the fastest one. For instance in the case of minutes and hours hands we wrote the two equations
of motion, when the fastest hand had already done a turn. We solved the system of the two
equations:

71' 60 .
6 — — fwpt =wyt =1=—min

On(t) = = +wyt
On(t) = wart 6 11

60
The time that pass between a meeting and the other is one hour and I min, i.e.

60 min + i 20
min + — min = — min
11 11
Given any instant we divide it by the meeting time and we take the floor of the result: this gives
us the number of overlaps already happend.
In order to obtain an angle between 0 rad and 2w rad we subtract 27 for each overlap. The

function that we were looking for is:

11 11

We can rewrite the equation above, with ¢ measured in minutes:

Onr_i(t) = 2r (71210t - U;Otp —9n {71210t} (2.1)
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This is a periodic function with period T = 7 min
't r
On—n(t)
n
7's - - . o o a 4 S . — 1 i T 13
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A=(0,0) B=(65450) (C=(130.81,0) D=(196.360) E={(261820) F=(327.27.0) G=(39273,0) H=(458.18,0) |=(52384,0) J=(589.09,0) K=(654.55, 0}

This is the graph of the function during half a day i.e. 720min. The angle calculated by the
fuction is the one betweeen the minute and hour hand therefore it can be a reflex angle.
In a similar way we get:

Os i) = 2r {2375} (2.2)

Os_p(t) =2 {71915} (2.3)

And finally the equations of the functions which indicate the angle between the hour/minute/sec-
ond hands and the initial vertical position are

Os(t) = 2 {} (2.4)
Ou(t) = 21 {61025} (2.5)
Oult) = 21 {7;0t} (2.6)

2.1 Overlapping times of two clock hands

In order to find when and where two clock hands meet (for example the minutes and hours hand)
we have to solve the follow equation:

Ou(t) = Onr(t) {7;0t} - {61075} (2.7)

If we call t = 720x we get the easier equation

{e} = {122}

We can seek the solutions in the interval [0; 1] because of the periodicity of the fractional part
function. We divide the interval [0; 1 in 12 parts:

1
e if0<z < B the equation becomes z = 12z and so z = 0



2
o if — <2 < — the equation becomes z = 12x — 1 and so x = —

12 — 12 11

o 2 3 .
o if — <z < — the equation becomes z =12z — 2 and so z = —
12 12 11

[ ]
=
|
A
8
A

12 11
T 2 the equation becomes x = 122 — 11 and so z = I (not in [0;1]).

k
Hence there are 11 solutions in [0; 1], i.e. the solution set is S = e withk e N|k=0,.., 10}

720
Therefore the solution set of the eqaution |2.7is Sy = {Hk |0< k< 10}

This means that the 2 clock hands meet 11 times a day.

We call these times overlapping times tﬁ/l_H.

In the same way it’s possible to find out the overlapping times of the hours and seconds hands
and the minutes and seconds hands.

2.2 Overlapping times of the three clock hands

In order to find when and where the three hands meet we have to solve the following system:

{ O11(t) = Our(t (28)

©n(t) = Os(t)
that is the system

R
(-0

If we call t = 720z we get the easier system

{z} = {122}
{z} = {720}
We have already solved the first equation in the previous section and we found in [0;1] the
k
solution set S; = {11 | k=0,.., 1()}. In the same way the solutions of the second equation in

[0; 1] are 719 and the solution set is Sp = {7/1\9 |A=0,..., 718}.

k A
The numbers 11 and 719 are coprime so 1= 719 only for k = A = 0 then the system has the

only solution & = 0. Therefore the only solution of the system ist=0.
In conclusion we can say that the three hands clock meet just at 12 o’clock.



2.3 Right angle

In order to find out when two clock hands form a right angle, we set the equation that the
3
describe the angle between two clock hands equal to g and g (the conjugate angle of the right

angle). Let’s analize the case with the hours and minutes hands:

s 37
On-put) = ) Vo Opn-_pg(t) = 5
Let’s now solve the two equations:
11 s 11 37
2 - Vv 2 = —
7T{m} 2 7T{no} 2

Which are:
ELI U Y (EU A G
720 [ 4 720 [ 4

11 1
Let’s start with the first one, which means that ——t¢ must be 1 plus a natural number n:

720
Ht—l—i— :>t—180+720
7200 2 "7 T T
. . 180 720 .
As defined 0 < t < 720 (t minutes in halfaday):>0<ﬁ+ﬁ n < 720 that is:
I TN |
11 1" "Z T
= 0<n<10
180 720 43
it b 2 =
11+11 <70:n<4

The solution set of the first equation is

180 720
-

<1
11+11 n,neNAN 0}

Following the same path for the second equation we obtain

540 720
S:%r {11+11 ,neENAnNnK 10}

So the solution set is the union of the two previous sets, i.e. the set

180 360
= _ _ <
S {11+11n,n€Nn\21}



Chapter 3

Geometrycal figures

3.1 Isosceles triangle

In order to discover when the triangle formed by two clock hands and the segment that connect
the two end-points not in common is isosceles, we split the problem in two cases: the first one
when the base of the triangle is the hours hand (h) and the two legs of the triangle are the
minutes hand (m) and the segment, the second one when the base of the triangle is the minutes
hand (m) and the hours hand (h) and the segment are the two legs of the triangle (we consider
h <m).

h
In the first case the angles opposite to the legs are Oy (t) = arccos <2) or its conjugate
m
m
while in the second case the angles are ©/_p(t) = arccos <—> or its conjugate. For instance,

h 2 1
if —= 3 than the angle becomes O,/ (t) = arccos (i) V O—p(t) = arccos <3)
m

As we find before the angle between the two clock hands as a function of time is:
11
Op—pg(t) =27 {t}
So, we can write:
9 11 ; h v 92 11 ; (m)
_— = I —_— —_— = T —_—
™ 720 arccos | o5~ T 720 arccos | 5

h m
arccos { o~ 790 arccos (—)
2w 11 2 11

Since ¢ is defined for values among 0 and 720, we have:

arccos <> arccos (ﬁ)
2 720 720
N crovo < [ —— 200 ) 2 g

0
< 2 11 27 11



3.2 Rectangle

In order to find out when the hours and minutes hands act like two sides, and the seconds hand

acts like the diagonal of this hypotetical rectangle we have to impose few conditions. First of all
3
the angle between minute and hour’s hand must be O, (t) = (g) VOuN_g(t) = (;)

We already find the solutions for this case, that are:

180 720 540 720
= = — R e —— - <
S {tGR/\nGN]t 11+11th 11+11nAn\10}

As was said before the second hand is the diagonal and for that to happen we have to impose
this condition:

s> =m? + h?

We also have to impose:

ssin(Op_s)=h V ssin(Op_g)=m

m

h
O _g = arcsin (> V  Op_g = arcsin (—)
s s

So, knowing that:

99
@M_S =27 {60t}

arcsin ﬁ =27 @t V  arcsin (@)_277 @t
s) 60 s/ 720
. h
30 arcsin (5) 60

30arcsin(m>

We have that:

h
Then, we can find a value of — or a value of ™ that make possible to find a value of ¢ such that
s

the rectangle could exist.

10



3.3 Parallelogram

We have three types of parallelograms that could be formed by the clock hands:

1 The sides are the hand of the minute and the seconds one, and one of the two diagonals is
the hours hand.

2 The sides are the hand of the minute and the hours one, and one of the two diagonals is
the seconds hand.

3 The sides are the hand of the seconds and the hours one, and one of the two diagonals is
the minutes hand.

Before analizing every case let it be known that s > m > h .

Let’s study the first case, where the diagonal is the hours hand:

2 - h2
s2=m? + h% —2mhcos (7 — Opr_p) Or— g = arccos Sm>
11 = n 2mh
Ori—g = 27r{ } P _9
720 M— m 720
o)
5 11 s2 —m?2 — h2
= T —_—mm
T 720" T Arecos omh
then ) ) )
- —h
. 360 arccos <52mmh> N @n R
N 117 11 -
2 _ 2 B2 1
For example, if % =3
We have that:
9 11 ; 2 N 11 ‘= 1 n N ; 240 n 720
T —1tp=—T —t=—-+4+n = — 4+ —n
720 3 720 3 11 11
In the second case we have:
h2 _ s2 _ 2
h% = s2 +m? + 2mscos (Os5_nr) 0s_nr = arccos sm>
2sm
Os () =274 2y = 59,
S—M = 4T 60 ®S—JV[( ) =27
60
o)

2 Qt = arccos —h2 —s* —m?
m 60 | 2sm

11



then

h2— g2 —m2
30 arccos <2sm> 60

P A n<10
597 * 59" "=

t:

In the third case we have:

2, _32_p2
m? = 52 + h? + 2shcos (Bs_p) 0s_pg = arccos m+8>
719 2sh

Os_u(t) =2m {mt} - Os_pi(t) = 2 { 719t}

720
o {7 m? 4+ —s? — h?
™ 720 = arccos —28h

m? 4+ —s2 — h?
360 arccos <) 790

2sh
e <1
7197 Tt N =10

SO

then

t=

12



Chapter 4

Symmetries

Definition 1. Given an angle o with 0 < o < 7, r* is the ray with origin in the clock center
that forms an angle oo with respect to the vertical line. Symmetrycal time t}} related to r® is
defined as the time in which the ray r™ or its opposite is the bisector of the angle between the
hours and minutes clock hands.

Definition 2. Symmetry axis a® is defined as the straight line to which the ray r® belongs.

4.1 Symmetry axis given a time

Given an hour, in order to find the symmetry axis between the two clock hands we have to
calculate its inclination angle « that is the mean-value of the hands angles.

Oy + O
G

For each time there is only one symmetry axis.

4.2 Symmetrycal times given an axis

Given an a®, we want to find the symmetrycal times ¢j.

Theorem 1. Given a symmetry azis a®, there are 13 different symmmetrycal time t7, with k
integer, 0 < k <12

Proof. At the beginning we have to observe that there are 2 different situations: In the first case
Of + O = 2 and in the second case Oy + O = 2 + 27
As shown in the graphs below.

13



Therefore we have to solve the two equation:

1 1 1 1
2 2 —9 ord — b yord —4l — 2042
7T{720}+ 7T{60} a VvV 7r{720t}+ W{Got} o+ 21
L LY 5 T B
7200 TG0t T

We divide the interval [0; 720] in 12 parts:

1 2
e if 0 <t <60, then: —375 S =>1= 20 <g> which is acceptable if 0 < a < 7
720 T 13 \«
13 « 720 s« 1
if 120, then: —t — 41 :—(7 1) hich i leif —7 <
e if 60 <t < 120, then: 720t 7T+ =1 3 ﬂ—i— which is acceptable i 127r a<T
e ...
1 2
e if 660 < ¢ < 720, them: ot — a4 11 = ¢ = 20 (9+11) which is acceptable if
720 13 \«
E < <
12 ST
Therefore:

e if0<<ax< 112 there is 1 solution

2
o if 112 <a< Eﬂ' there are 2 solutions

11 )
o if Ew < a < 7 there are 12 solutions

Hence there are from 1 to 12 solutions depends on a.

1 1
Here is the graph of the function y =7 { 0 } + 7 {603:} which has to be intersected by the
graph of the function y = o with 0 < a < 7.

14
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1 1
The second equation is {720t} + 7 {G()t} = a + 7 we divide the interval [0,720] in 12

parts:

720 1
e if 0 < a <60 thent= 3 (g + 1) which is acceptable if 0 < a < ETF
T

2 2
e if 60 < a< 120 then t = Q (g + 2) which is acceptable if 0 < a < —m
T

13 12
o ...
) 720 /s« S .
e if 660 < a < 720 then t = EE) (— + 12) which is acceptable if 0 < a < 7
T
Therefore:

1
e if0<<ax ﬁw there are 12 solutions

2
o if —7m < o< —7 there are 11 solutions

12 12
e ...
11 ) .
o if ETI‘ < a < 7 there is 1 solution

1 1 1 1
Here are the graphs of the functions y = {72030}—1—77 {60:6} andy = {mx}—i—ﬂ' {603:} -7
that have to be intersected by the graph of the function y = a with 0 < o < 7.

15



-n

Hence Vo | 0 < o < 7 there are 13 solutions of O + Oy =2a V' Oy + Oy = 2a0+ 27 then
there are 13 different symmetrycal times:

720
t%z—(g—l—k) with k € Nk < 12
13 \«

O

Theorem 2. Let’s define nj = Og(ty) and pff = Oup(tY), given an azis a®, given h and
m the lenghts of the hours and minutes clock hands, the points Af(hsin(ng); hcos(ny)) are the

T
vertices of a reqular tridecagon inscribed in the circumenference of radius h with side 2h sin (E)
The points Bif(msinug);mcos(ug)) are the wvertices of a reqular tridecagon inscribed in the

7
circumenference of radius m with side 2m sin (E)

Proof. Given two symmetrycal times ¢ and ¢{_; let’s calculate the difference between 7}’ and
M1
« « 1 « 1 «
Mk = Me—1 =27\ month ¢ = 27 moptho1 (=
1 720 s« 1 720 s«
Ml (4 k) =27 — - (=4 k—1)p =
77{720 13 <7r+ )} 77{720 13 (HL )}
o k o k 1
MM b b — 2T —— f - — b=
”{13w+13} 7T{137r+13 13}
op( &k e Ry o k1 o k1)
m 137 13 137 13 13~ 13 13 137 13 13])

16



or (| F L e kL
137 13 13 137 13 13

Becauseof 0 <a<nm A 0 <k <12,

S0

B2 (O O AN o I
137 13| 137 13 13|

Then the difference above becomes:
1 2
a _ e = 2 —_ = —
Me — Mk—1 Q0 (13> 137T

This means that the 13 symmetrycal times divide the hours circumnference in 13 equal parts.
Consequently Af is after A7 ; in chronological order. For symmetry By is before By ; then
let’s now calculate the difference between ug_ | and g,

W 12 12 12 12 12
“’“—1_“’“_2”{137r0‘+13k 13} 277{137ra+13k}_

or (| 220 120 _ | 12,12, 12] 12
T\ 13 T 13 BT 13 T3 13

12
Because the two arguments of the two floors differ of 13 the difference can be 0 or 1. So

the difference above becomes:
12 24 1 2
2n | ——< | =—=m V 21|55 =-—57
13 13 13 13

24
Because of By}, is after By the difference pj_; — uf can’t be negative so —37 is not accetable.

This means that the 13 symmetrycal times divide the minutes circumnference in 13 equal parts.

17



"‘-\__________-._______'_.-"'

In order to calculate the two side we use the chord theorem. So the chord, for the hour circum-
. . ™ . . . . ™
nference, is 2h sin (E) and for the minutes circumnference is 2m sin (ﬁ) O
2

Theorem 3. The rotation angle § between the two polygons is min {'y, 1—37r —’y} with ~ the

angle between the first point A5l after v and the first point By, before r.

2
Proof. The first point Aj clockwise starting from the vertical line is Af, so the angle nf = 1—3&.

2

o — Ha 11

Let p = {(Q—S)J = {T:J, the point Ay is the first point after 7, and Bjy is the
13

2
first point before r%, v = ng‘ﬂ — ,ugﬂ then § = min < 7, 1_371— —

18



Corollary 1. If one of the 13 different symmetrycal times is an overlapping time th\/I—H then the
rotation angle 6 = 0.

Proof. In this case ny, 4 = i1 so v =0 and then 6 = 0. O

Notice that a time corresponds to a single axis meanwhile an axis corresponds to thirteen
hours. This is the same relation between the 13" power of a complex number and the thirteen
roots of a complex number.

4.3 Hours and complex numbers

Theorem 4. Given a symmetry azis a® the points Aj} in the hours circumnference are the 13

points in the circumneference of radius h in the Argand-Gauss plane which rapresent the thirteen

13 13
complez roots of the complex number z with arg(z) = 5T 200 — 2qm, g = | — — & , |z = ht3
T

4
and BY are the 13 complex roots of the complex number w with arg(w) = arg(z)+136, |w| = m!3.

Proof. In order to find the last Af before the abscissa axis let’s caluclate

then Ag is the last point before the abscissa axis.
arg(z)

If we consider the 13 roots of a number z € C and we call zg the first root then arg(zg) =

To find arg(z) of the complex number z whose roots form the same tridecagon formed by the 13
A} let’s equal the angles of zp and Ag:

720 s« 2
B0 L) o = 2at
@~ 13 \7 71 lly) = 30+ 30
13
Boe—I—Bqﬂ—g—arigz) = arg(z):?w—2oc—2q7r
arg(w)

The first root wg of the complex number w has an angle and it has to be the angle of zg

plus the rotation angle § in order to be a vertice of the minutes tridecagon.

arg(w)  arg(z)
13 13

+ 0 = arg(w) = arg(z) + 130

The complex roots belong to a circumnference of radius %/z (the real square) so h = %/z then
|z| = '3 and in the same way |w| = m!3. O

19



4.4 Examples
We are now going to analyze how it’s possible to connect a given symmetry axis a® with 2

complex numbers

Example 1 For a = g:

= 720 (1
The 13 symmetrycal time are t} = 3 \3 + k) with 0 < k < 12

And we have drown them in the graph below:

12

P . ikt
e

o 5

- -
il ——

- —ay_

20



13 1 13 2 11
Thanks to the theoremwe calculate: ¢ = {Z — gJ = 2 and arg(z) = 5T 3T~ dm = 57
I . Im(x)
1.0 " °
L ]
L]
0.5
-
[ ]
0.0+ : o
L ]
-0.5 .
L ]
L
e e
. ”_,--‘:' -1.0 °
""""""" -0 -05 00 0.5 1.0
1.7
Thanks to theorem [3|let’s calculate p = 5 3| =
T
z z 1 /1 12 /1 14 4 2
—ni =2l — (2 42) ol S (Cyo) b S S 2
7= T 7T{13(3+ )} 7T{13<3+ )} 30" 13" 39"
5 2 . 2 4 2
=min (v, —=7—7 ) =min | —m;, =7 ) = —7
Tty 39" 39 39
(w) 11 n 2 5
arg(w) = — T ==
g Tt T= 5T
- M"'j: . e Im
1.0} v
L ] L
o5l s .
] ® ®
0.0 t —— T
' ® @
=0.5}
_ ® ®
~1.0} .
s s - ~10 -05 00 05 10
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Chapter 5

The interplanetary voyage

Starting from the clock problem, we want to determine the angular position and the time at
which it would be more advantageous to launch a spaceship from one planet (i.e. the Earth) to
reach another (i.e. Mars) with the shortest possible distance. In the approximation of a circular
orbit it is evident that the shortest path is radial. However, it must be considered that the target
planet will move during the time of the journey; consequently the trip must be anticipated by
the time necessary to cover this distance as illustrated below.

Final instant B

Initial instam/

5.1 Spaceship in uniform motion

At first we dealt with this problem by assuming that the motion of the spaceship was uniform,
thus neglecting the initial period of acceleration. The problem was treated in polar coordinates
by writing the equations of motion in parametric form as a function of time, that is the distance
r(t) and the angle 6(¢) with respect to the centre of the Sun. These equations were written
separately for the spaceship that departed from Earth

r(t) = Rg + vt
o(t) = 0

and for the planet Mars:

Q(t) = 00 + LO]V[t

{T(t) = Ry

22



In the equations above v is the constant speed of the spaceship, Rgq the mean radius of the
Earth’s orbit, Rj; the mean radius of the Martian orbit, 6y the angle of advance of Mars with
respect to the Earth and wjys the angular velocity of Mars. The travel time and the angle of
advance can now be obtained by equating member to member the previous systems of equations,
from which it follows

R@+Ut:RM
0 =00+ wnt

So we obtain

‘ Ry — Rg
v
g — o — Bu
0= —"—" WM
v
Earth Mars
Orbital circle C(km) 924375700 | 1429000000
Orbital circle C(au) 6,179 9,552
Orbital radius R(km) 147118962 | 227432414
Orbital radius R(au) 0,9834 1,52
Orbital period T(d) 365,26 686,96
Angular speed w(rad/d) | 1,72-1072 | 9,14 -1073

Table 5.1: Some orbital data for the Earth and Mars.

Considering the orbital for the Earth and Mars, summarized in table and a speed of 1.1 -
10*m/s (comparable with the escape velocity from the planet Earth and compatible with those
currently reachable by existing space vectors), it yelds a travel time

_ Ru — Re

(Y

t ~ 84d

and a lead angle
Ry — Ry

0o wy ~ 0,765 rad ~ 44°

5.2 Escape velocity and acceleration

In the following it was considered the need to include an initial period of acceleration in the
motion of the spaceship. Rather than dealing with the departure of the spaceship directly
from the ground, we hypothesized that the same was previously placed in a stable orbit and
subsequently launched at the appropriate time in the established direction.

In order to obtain a realistic estimate of the acceleration time needed, we determined that
it was enough for the spaceship to reach the escape velocity from planet Earth. The latter is
defined as the speed that a body must have to escape the gravitational field of a planet, that is,
the speed it should have at the time of departure to reach an infinite distance from it (where its
potential energy tends to zero) with a speed that is canceled asymptotically.

Considering the kinetic and potential energies of the spaceship at the time of departure, one
obtains a total mechanical energy

1 2 GmM@

Bi = B+ Upi = gl = =

23



where Mg and Rg point respectively out to the mass and the radius of the Earth, and G is the
gravitational constant.
Requiring that both cancel when the spaceship is finally out of the influence of the Earth’s
gravitational field
Epy=Ekf+ Uy =0+0

by means of the conservation of mechanical energy we obtain that

2G M,
P ie-LLAY, AR e

—muv

Using the values in the following table

N m?
6,67 10" | 5,9726 - 10%* | 6,372797 - 10°

and an initial height h; = 400 km = 4 - 10° m, compatible with the average flight altitude of the
International Space Station, one obtains

2G My,
=[S 10846
Y=\ Re + Iy m/s

which is in good agreement with the value previously used for the uniform motion.

In order for the orbit of the spaceship at the reference altitude to be stable, its initial speed
must respect the equation of gravitational equilibrium, i.e. the corresponding centrifugal force
must be equal and opposite to the gravitational attraction force:

muvg GmMg GMg

= :> f— - =
RG} + hi (R@ + hi)Q v R@ + hi

= 7669,4m/s

Assuming that the departure of the spacecraft occurs when it, in its orbital motion around the
Earth, is directed towards Mars, and neglecting the radius Rg + h; of its orbit with respect to
the distance between the two planets, the launch can be considered radial as assumed in section
5]

Considering a spaceship capable of maintaining a constant acceleration of about 3g (which
is compatible with those currently reachable by existing space vectors), the time necessary to
reach the required escape velocity is

Vi — Vo

~ 108
39 N

tace =
that is lesser than 2 minutes, and obviously negligible compared to the 84 days estimated for the

journey. This justifies the fact that the motion of the spaceship can be considered uniform for
the entire duration of the journey.

5.3 Equations of motion and angle between planets

Let us now try to obtain the hourly law which expresses the dependence on the time of the angle
formed by the vector rays that identify the two planets with respect to the Sun.
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Following the approach seen in chapter 2, starting from an instant ¢ in which the two planets
are aligned with the Sun, we first want to find the angle traveled by the slowest of the two (Mars
in our example) when the other one has already traveled a complete orbit. This initial phase is
given by

o= oM oo g a0
Wo M
having used the orbital periods of the planets shown in table The time at which the next
alignment of the planets will take place, measured from the moment when the fastest one (the
Earth in our example) has already completed a revolution, will be obtained by equating the
angles traveled

® +wpmts = wgtl

from which it results:

ho g Te/Tu 2 Te/Ty  Ts Telu T8 1) 9y
T e —wu 2 2n 2rTu—Ts TuTu-Ts Tu-Ts ’
Ty Ty ToTy

The total time T elapsed since the previous alignment will then be obtained by adding the
period of the fastest planet to this

T2 +TuTe -T2  TuTy

1=htle Ty — Ty Ty — Ty

1 1\ !
<—> = 779,38d ~ 780 d
To Tu

The angle © between the planets will be covered with an angular velocity €2 such that
o) = Qt
which must return a round angle after the time 77. The resulting €2 is therefore given by:

2
Q=—=28,06-10"
T ’

grad 8 rad
d 1000 d

The angle # we want to obtain in the end must be included in the [0;27] range, that is the
number N of round angles already covered must be subtracted from ©. This last quantity can
be expressed as a function of time as the whole part of the t/T} ratio:

t
N=|—
{TlJ
In conclusion the sought hourly law can be written as

t 8 rad t
0(t) = O(1) —2Nm = Qt —2r | = | ~ > 190y on| T
(t) = 6(t) - 2N= W{TJ 1000 d ﬂ?é&()dJ

5.4 Distance between planets

Another problem we faced was that of determining the distance between the two planets as a
function of the angle 6(t). Let us consider the triangle SEM shown in the figure. It will have
sides Rg, Ry and d, where d is the Earth-Mars distance.
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In the frame of reference in which the Earth is stationary with respect to the Sun the angle
between the planets is just 6(¢). By Carnot’s theorem it follows that:

d=\/R% + R}, — 2ReRas cosb(1)

The distance between the two planets thus obtained is represented below in astronomical units
as a function of time measured in days.

4

d(t), u.a
m /\/\/
3 -1400 —1200 1000 —800 —600 —400 —200 0 200 400 600 800 1000 1200 1400 161

t,d

-2

As it is evident, the Farth-Mars distance goes between a minimum of ~ 0,5 a.u. when the two
planets are aligned on the same side of the Sun, and a maximum of ~ 2,5 a.u. when instead they
are on opposite sides.

5.5 Trajectory of the midpoint

A more complex problem related to the previous one may be that of determining the trajectory
of the Earth-Mars midpoint. The instantaneous position of the midpoint could be obtained in
Cartesian coordinates as the average of those of the two planets.

g +axpy  Rgcosby + Ryrcosby  Rg cos(wgt) + Ray cos(wayt)

w(t) = - -

2 2 2
(t) = Yo +ym _ Rgsin Og + Rarsin Oy _Re sin(wegt) + Ry sin(wpst)
2 2 2

On the other hand, this approach would not have an obvious link with the original problem.
Therefore we preferred to determine the position of the midpoint in polar coordinates (r(t); «(t))
in the reference system in which the Earth is stationary with respect to the Sun.
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In this frame of reference the Sun is placed on the origin and the Earth in the position (1 a.u.; 0)
while Mars orbits on a circle of radius Ry ~ 1,5a.u. The angle 6(t) must also be considered
negative since the angular velocity of Mars is less than that of the Earth. The midpoint will
be given by the intersection between the diagonals of the parallelogram of sides SE and SM.
The distance r(t) of the midpoint from the Sun is given by half of the diagonal S@ and can be
obtained again using Carnot’s theorem on the triangle SEQ.

- :@ _ \/R + R2, — 2Rg Ry cos(m — 6 \/R2 + R%, +2R@RM0059()
2

To find the position of the midpoint in polar coordinates, it is also necessary to determine the
angle a(t) formed by the segment between the Sun and the midpoint and the Sun-Earth vector
radius. Once again it is possible to use Carnot’s theorem on the triangle QSFE

Ry =R% + @2 — 2R SQ cos at)
which gives

R%— R%, +5Q°  R%—R3 +4r2(t) Re + Ry cos0(t)

cosa(t) = — = =
2R+S5Q 4R (1) \/Ré + R3, 4+ 2Rg Ry cos 6(t)

The Cartesian coordinates z(t) and y(¢) of the midpoint will be given by
x(t) = r(t) cos a(t)
y(t) = r(t)sina(t)

Consequently, it will be necessary to express sin «(t) as a function of the cosine of the angle.
Using the fundamental identity of goniometry, we obtain

RZ, + Rj; cos® 0(t) + 2Rg Ryy cos (L)
RZ% + R%, + 2Rg Ry cos 0(t) B

sina(t) = £/1 — cos? a(t) = i\/l -

B j:\/ R2%,(1 —cos?0(t)) RM sin6(¢)
- 2
R2 + R3, + 2R Ry cos Ot \/R 2+ 2Ra Ry cos 0(t)
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It makes no sense to consider negative roots as the sine of «(t) is definitely positive as long as
the angle between SE and SP is between 0 and 7. But this is always the case since the midpoint
P is inside the convex angle ESM. In this way the Cartesian coordinates result:
x(t) =r(t)cosa(t) = Ro + Rar cos6(1)
.2 (5.1)
Ryrsin0(t)
2

y(t) = r(t)sina(t) =
The corresponding Cartesian equation can be easily obtained as it follows:

R Ry cosO(t
z(t) = r(t) cosa(t) = —2 * ]\2/[ & _ {2:1:(t) — Rg = Ry cos6(t)

y(t) = r(t)sina(p) = 20 2y(t) = Ras sin 6(1)

42? — ARgx + R% = R3, cos® O(t
{ ot + Ro =Ry cos” () 42 + 4y® — ARgx = R, — RS

4y* = R%, sin?0(t)
This is obviously the equation of a circle, which can be written as

1 R, —R2 1 1 \? R2
o Roet jRE eyt = IR IR o (e GRe) eyt = T

1
In this form it is clear that the center of the circumference has coordinates Cp <2R@ ,O) and

1
its radius is equal to Rp = §RM.
If we now also want to consider the rotation of the Earth, the new coordinates of the midpoint
will be obtained by adding the Earth’s rotation angle to a.

{x(t) = r(t) cos(a(t) + wrt)
r(t) sin(a(t) + wrt)

By expanding sine and cosine with the angle addition formulas and using the relations (5.1)) it
follows that

1
(Rg + Ry cos0(t)) cos(wrt) — §RM sin 6(t) sin(wrt)

N =N

1
(Rg + Ry cosO(t)) sin(wrt) + iRM sin 6(t) cos(wrt)

These parametric equations produce the curve represented (in black) in the following figure,
together with the Earth’s orbit (in blue) and the Martian one (in red).
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Furthermore, by expanding the term in parentheses, one obtains

1 1
x(t) = %R@ cos(wrt) + iRM cos 0(t) cos(wrt) — §RM sin 0(t) sin(wrt)

1 1 1
y(t) = §R@ sin(wrt) + iRM cos 0(t) sin(wrt) + §RM sin 6(t) cos(wrt)

which can also be written as

x(t) = %RM cos(0(t) + wrt) + %R@ cos(wrt)
1 1
y(t) = §RM sin(6(t) + wrt) + iR@ sin(wrt)

Finally, by noticing that 6(t) + wrt is the rotation angle of Mars wy,t it results

1 1 N+ R .
2(t) = 5 R cos(wart) + 5 R cos(wrt) = R cos(wn )2+ & cos(wrt)

! i i t) + Rg si t
y(t) = QRM sin(wast) + §R® sin(wrt) = Ry sin(wyr )2+ o sin(wrt)

which is exactly the arithmetic mean between the positions of the Earth and Mars (5.5)).
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Chapter 6

The simulations

In this section we have created two simulations concerning the Solar System using Unity, a
widespread graphics software for creating animations, and also employing programming parts in
the Cf language (C sharp). In the first simulation we have drawn the graph of the midpoint
of a segment which connects two planets orbiting around the Sun. In the second one we have
simulated, in a approximate way, an interplanetary voyage from Earth to another planet of the
Solar System.

6.1 First simulation: graph of the midpoint

The first aim is to plot the midpoint of an imaginary segment between two planets in the Solar
System. During the creation of this simulation we analyzed fours aspects: - Creation of a 3D
scaled model of the Solar System - Programming of the motion of the planets - Creation of the
segment, and plotting of its midpoint - Programming of the various menus for the selection and
choice of the planets.

In developing these four sections we created many pieces of code, especially for the motion
of the planets by configuring parameters such as the rotations and the revolution of the planets.
For the midpoint, instead, we used packages already present on Unity.

6.2 Second simulation: the interplanetary voyage

For the second simulation we started from the results obtained in the previous chapters concerning
the interplanetary voyage. We decide to leave out the calculation of fuel consumption of the
spaceship or the long distances in order to simplify the analysis. We set ourselves these goals: -
Graphics and 3D models - Algorithms and programming - Real aspects

Regarding the graphics and algorithms we reused parts of the previous simulation, such
as the planetary motion algorithms, modifying some image rendering factors in order to make
the simulation look more photorealistic. As regards the part of physics we focused on the
“gravitational slingshot”. It can be used to accelerate a spacecraft, that is, increase or decrease
its speed or redirect its path. To create this section we therefore used the “IA” package of
Unity which allows the automatic movement of objects which we optimized by inserting the
orbits so that the spaceship could use them to recreate the gravitational slingshot and reach the
destination. For the development of these orbits we used parameters similar to the real one (for
example the orbit of Jupiter is far larger than that of the Earth)
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Figure 6.1: Graph under development of the midpoint of a segment connecting Venus and Mer-
cury
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Figure 6.2: Representation of the orbit of Mercury

Figure 6.3: Second simulation image
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We realized that this system of representation of physical phenomena is effective for the
understanding of theoretical concepts. However, we found many difficulties, in particular with
regard to the motion of the spaceship in the second simulation. We could have improved if we
had had more time available, adding more parameters allowing us to create a model as close as
possible to the real one.

33



	Introduction
	Angles between the clock hands
	Overlapping times of two clock hands
	Overlapping times of the three clock hands
	Right angle

	Geometrycal figures
	Isosceles triangle
	Rectangle
	Parallelogram

	Symmetries
	Symmetry axis given a time
	Symmetrycal times given an axis
	Hours and complex numbers
	Examples

	The interplanetary voyage
	Spaceship in uniform motion
	Escape velocity and acceleration
	Equations of motion and angle between planets
	Distance between planets
	Trajectory of the midpoint

	The simulations
	First simulation: graph of the midpoint
	Second simulation: the interplanetary voyage


