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A journey through the wonders of Fermat’s point

ISISS “M. Casagrande”, Pieve di Soligo, Treviso – Italy

Abstract

The Fermat point is a remarkable point of a triangle introduced by the French mathematician
Pierre de Fermat in the XVII century. In this article we studied some known properties of such point,
also managing to discover some new interesting characteristics. We started analysing triangles,
moving to quadrilaterals and finally to polygons. Regarding triangles, by slightly modifying the
definition of Fermat point, we obtained a new set of points and we proved that the Fermat point
belongs to this set as well as the triangle centroid and the orthocenter. Moving away from triangles,
we obtained some results involving regular polygons, but because of the complexity of the task we
were not able to find a method to determine the Fermat point in irregular polygons. For this reason,
we used calculus to develop an algorithm to approximate Fermat point.
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Chapter 1

Triangles

Let’s start by analyzing the triangle and the definition of Fermat Point of a triangle.

Definition 1. Considering the equilateral triangles constructed on the sides of a triangle, the
Fermat point is the intersection of the segments whose endpoints are a vertex of the triangle and
the vertex that doesn’t belong to the triangle of the equilateral triangle built on the opposite side.

We can now obtain the following results:

Theorem 1. The Fermat point is the intersection of the circumferences circumscribed to the
equilateral triangles we mentioned before.

Proof. Let us consider the equilateral triangles ACE, BCD and ABG built on the sides of the
triangle ABC. We can prove that the triangles EBC and ADC are congruent for the first
congruence criterion, indeed AC ∼= EC and CD ∼= BC for construction and E“CB ∼= A“CD due
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to the sum of congruent angles (A“CB in common + 60◦). In particular C“EB ∼= CÂD, so A and
E see the segment CF under the same angle. Therefore the quadrilateral CFAE is inscribable
in a circumference. In the same way we can prove that the quadrilateral CFBD is inscribable
in a circumference. Particularly C“FA ∼= C“FB ∼= 120◦ (in inscribed quadrilaterals the opposite

angles are supplementary). Consequently, also A“FB measures 120◦ and the quadrilateral AGBF
is inscribable in a circumference. In this way we have proved that the three circumferences meet
each others in the Fermat point F .

Theorem 2. In a triangle, the segments whose endpoints are the Fermat point and a vertex of
the triangle forms angles of 120◦.

Proof. This theorem is a consequence of what we have seen in the proof of the theorem 1.

Theorem 3. In a triangle, the Fermat point minimizes the sum of the distances from the three
vertices A, B and C.

Proof. Let’s consider a point P inside a triangle ABC. Let’s rotate with center A the polyline
composed by AP and PC by an angle of 60◦. We obtain a segment AP ′ ∼= AP and a segment
C ′P ′ ∼= CP . The triangle APP ′ is equilateral. So also P ′P ∼= PA. Therefore the sum AP +
BP + CP is equivalent to the sum C ′P ′ + P ′P + PB. This sum is minimum when the points
C ′, P ′, P and B are aligned. In this case the angle A“PB = 120◦. In conclusion the sum is
minimum when the point P coincides with the Fermat point F .

4



1.1 Some particular cases

Now let’s study some properties of the Fermat point in particular triangles.

1.1.1 C belongs to a line perpendicular to the side AB

Theorem 4. In a triangle ABC, if the vertex C lies on a line perpendicular to the side AB,
the Fermat point of ABC belongs to the arc of circumference circumscribed to the equilateral
triangle built on the side AB.

Proof. As we said before, the angle AFB measures 120◦, so the quadrilateral AFBD, where D
is the third point of the equalateral triangle built on AB, is circumscribed to a circumference
and the point F belongs to this.

1.1.2 C belongs to a line parallel to the side AB

Following the same reasoning we can obtain this theorem:

Theorem 5. In a triangle ABC, if the vertex C lies on a line parallel to the side AB, the Fermat
point belongs to the arc of circumference circumscribed to the equilateral triangle built on the
side AB.
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1.1.3 C belongs to the circumference passing through A and B

Following again the same reasoning we can obtain this theorem:

Theorem 6. In a triangle ABC, if the vertex C lies on the circumference passing through A
and B, the Fermat point belongs to an arc of the circumference circumscribed to the equilateral
triangle built on the base AB.

1.2 Isosceles triangle

1.2.1 C belongs to the line perpendicular to the base AB passing through its
midpoint in an isosceles triangle

First we prove the following theorem:

Theorem 7. In an isosceles triangle the Fermat point belongs to the axis of AB.

Proof. Considering the triangles ACD and BCD they are congruent because BC ∼= AC, AD ∼=
DB and DC in common. So A“DO ∼= B“DO. Considering ADO and BDO, they have A“DO ∼=
B“DO, AD ∼= DB, OD in common. Then D“OB ∼= D“OA ∼= 90◦. Due to its definition the Fermat
point belongs to the segment DC that is the axis of AB.

Now we obtain:
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Theorem 8. In a triangle ABC, if the point C belongs to the axis of AB, the Fermat point is
always the same.

Proof. Let’s consider the base AB = b. We know the Fermat point F belongs to the axis of
AB, so the angles FAG and FBG measure 30◦, indeed AFB is 120◦, as we have seen before.

AG is
b

2
so:

� AF =
AG

sin(60◦)
=

b/2√
3/2

=
b√
3
=

√
3

3
b

� FG = AF · sin(30◦) =
√
3

3
b · 1

2
=

√
3

6
b

Therefore for any C belonging to the axis of AB, F belongs to the axis as well and

FG =

√
3

6
b

1.2.2 The base of an isosceles triangle restricts

Theorem 9. In an isosceles triangle, with sides of length l and base b, restricting the base from

b to b - x, the Fermat point is lowered by

√
3

6
x

Proof. Considering the triangle FAB the height relative to the base measures
l

2
.

Instead in the triangles F ′DE the length of the segment is
√
3l − x.

We know that :
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� AH =

√
3

2
l − x

2

� F ′H = tan(30◦) ·AH → F ′H =
1

2
l −

√
3

6
x

In conclusion FF ′ =
l

2
−
Ç
1

2
l −

√
3

6
x

å
=

√
3

6
x

1.3 Cartesian coordinates of Fermat point

We propose two distinct methods to find the Cartesian coordinates of the Fermat point. Without
losing generality, we will position the origin of the Cartesian plane at point A of the triangle
and the x-axis along the side AB of the triangle.

1.3.1 First method

Let’s consider a generic triangle ABC with all angles less than a right angle. The three vertices
of the triangle in the coodinates system are A(0; 0), B(xB; 0) and C(xC ; yC) with xB, xC , yC ∈ R.

To find the Fermat point F we can build the equilateral triangles on AC and AB.
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Therefore we can find the coordinates of the points D and G by rotating respectively C and
B by an angle of π

3 . We can calculate the coordinates of the two new points using the matrix of
rotation:

Rφ =

ï
cos(φ) − sin(φ)
sin(φ) cos(φ)

ò
The two points themselves will indeed be:

D =

ï
xD
yD

ò
=

cos(π3) − sin
(π
3

)
sin
(π
3

)
cos
(π
3

)  ïxC
yC

ò
=

12xC −
√
3

2
yC√

3

2
xC +

1

2
yC



G =

ï
xG
yG

ò
=

cos(−π

3

)
− sin

(−π

3

)
sin
(−π

3

)
cos
(−π

3

)
 ïxB

yB

ò
=

 1

2
xB

−
√
3

2
xB


We can now draw the two lines GC and DB and find their equations:
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GC : y − yG = mGC (x− xG)

DB : y − yB = mDB (x− xB)

The two angular coefficients can be expressed as:

mGC =
∆y

∆x
=

yC − yG
xC − xG

mDB =
∆y

∆x
=

yD
xD − xB

and the two equations will therefore be:

GC : y =
yC − yG
xC − xG

x− yC − yG
xC − xG

xG + yG = sx− sxG + yG

DB : y =
yD

xD − xB
x− yD

xD − xB
xB = tx− txB

where s =
yC − yG
xC − xG

and t =
yD

xD − xB
. We can now find the coordinates of F by intersecting

the two lines:
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F = GC ∩DB →
®
y = sx− sxG + yG

y = tx− txB

By simply solving the system, we get:


x =

txB + yG − sxG
t− s

y = t
txB + yG − sxG

t− s
− txB

And the Fermat point results to be the following:

F

Å
txB + yG − sxG

t − s
; t

txB + yG − sxG

t − s
− txB

ã
1.3.2 Second method

The second method uses Theorem 1,that is the Fermat point is the intersection of the two
circumferences circumscribed to the equilateral triangles constructed on the sides of the triangle.
So we can get the Cartesian coordinates of the Fermat point by solving the following system:

ñ
x−

√
3

3
AC sin

Å
α+

2

3
π

ãô2
+

ñ
y −

√
3

3
AC sin

(
α+

π

6

)ô2
=

AC2

3

x2 + y2 − xxB + y

Ç√
3

3
xB

å
= 0
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First we find the equation of the circumference built on the basis of the triangle using the
geometric center G (which coincides with the center of the circumference) and the radius (that
is the distance from the point G to the point A). After that, we first rotate the circumference

of an angle α and then we shrink it. In particular G has coordinates

Ç
AB

2
;−

√
3

6
AB

å
.

With a rotation of an angle α+
π

3
we’ve obtained the point

G′
Ç
AB

2
cos
(
α+

π

3

)
+

√
3

6
AB sin

(
α+

π

3

)
;
AB

2
sin
(
α+

π

3

)
−

√
3

6
AB cos

(
α+

π

3

)å
.

Thanks to the auxiliary angle method we find G′
Ç√

3

3
AB sin

Å
α+

2

3
π

ã
;

√
3

3
AB sin

(
α+

π

6

)å
.

We now observe that the ratio between X ′′
G and X ′

G is equal to the ratio between AG′′ and AG′,

where AG′′ =
AC√
3

and AG′ =
AB√
3
; we can say the same for y′′G and y′G.

We have obtained G′′
Ç√

3

3
AC sin

Å
α+

2

3
π

ã
;

√
3

3
AC sin

(
α+

π

6

)å
. So we can find the equation

of the circumnference circumscribed to the triangle ACD with center G′′ and radius r =
AC√
3
:ñ

x−
√
3

3
AC sin

Å
α+

2

3
π

ãô2
+

ñ
y −

√
3

3
AC sin

(
α+

π

6

)ô2
=

AC2

3

the second equation can be written using the center G and the radius r1, that is:

x2 + y2 − xxB + y

Ç√
3

3
xB

å
= 0

Example

We now give an example were we use the two method to calculate the Fermat point of the
triangle ABC, with A (0, 0) , B (7, 0) and C (2, 3).
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First method

First of all we calculate

G

Ç
7

2
;−7

√
3

2

å
e D

Ç
1− 3

√
3

2
;
√
3 +

3

2

å
then

s = −6 + 7
√
3

3
e t = −6 + 5

√
3

39

so the Fermat point is F

Ç
273 + 119

√
3

218
;
441 + 427

√
3

654

å
.

Second method

Following the second method we know that AC =
√
13, α = arctan

3

2
and xB = 7. The system

becomes:


ñ
x−

√
3

3

√
13 sin

Å
arctan

3

2
+

2

3
π

ãô2
+

ñ
y −

√
3

3

√
13 sin

Å
arctan

3

2
+

π

6

ãô2
=

13

3

x2 + y2 − 7x+
7
√
3

3
y = 0

We simplify it to obtain:
ñ
x− 1 +

√
3

2

ô2
+

ñ
y − 3

2
−

√
3

3

ô2
=

13

3

x2 + y2 − 7x+
7
√
3

3
y = 0

The solution is again the Fermat point F

Ç
273 + 119

√
3

218
;
441 + 427

√
3

654

å
.

1.4 Sum of the distances

The aim of this section is to prove an expression that relates the sum of the distances of the
Fermat point from the vertices of the triangle to the sides and the area of the triangle.

Theorem 10. Given a triangle with sides a, b and c, with area A, the sum of the distances of
the Fermat point F from the vertices x+ y + z is:

x + y + z =

 
a2 + b2 + c2

2
+ 2

√
3A

Proof. First we can compute the area of the triangle ABC as the sum of the areas of the three
triangles inside ABC:
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AABC = AAFC +AAFB +AFCB

=
1

2
xz sin (AFC) +

1

2
xy sin (AFB) +

1

2
yz sin (BFC)

=

√
3

4
xz +

√
3

4
xy +

√
3

4
yz

=

√
3

4
(xy + yz + xz)

And therefore get to the equivalent equation:

xy + yz + xz =
4A√
3

Subsequently, through the use of the cosine theorem in the three internal triangles we can
calculate the sum of the squares of the three external sides of the triangle ABC. This eventually
allows us to isolate the square of the sum of the three sides x, y, z:

a2 = x2 + y2 − 2xy cos (AFB) = x2 + y2 + xy

b2 = y2 + z2 − 2yz cos (CFB) = y2 + z2 + yz

c2 = x2 + z2 − 2xz cos (AFC) = x2 + z2 + xz

We can write the sum of the squares of the sides as:

a2 + b2 + c2 = 2(x2 + y2 + z2) + xy + xz + yz

= 2(x2 + y2 + z2) +
4A√
3

Therefore:

x2 + y2 + z2 =
1

2
(a2 + b2 + c2)− 2A√

3

We can now write the sum of x, y and z squared as:

(x+ y + z)2 = x2 + y2 + z2 + 2(xy + yz + xz)

=
1

2
(a2 + b2 + c2)− 2A√

3
+

8A√
3

=
1

2
(a2 + b2 + c2) +

6A√
3

We can finally take the square roots of both sides of the equation and conclude that:

x + y + z =

 
a2 + b2 + c2

2
+ 2

√
3A
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Now we can calculate the area with Heron’s formula

A =

…
p

2
·
(p
2
− a
)(p

2
− b
)(p

2
− c
)

so the sum of the distances in terms only of the side lengths of the triangle, letting p be the
perimeter of the triangle.

1.5 Wrapping triangles

Let’s now consider a triangle ABC and let’s draw, thank to the definition, the Fermat point F .
We call the triangle LKH the wrapping triangle of the Fermat point of the triangle
ABC.

We state the following theorem:

Theorem 11. Given a triangle and is Fermat point F then the Fermat point of the wrapping
triangle is again F

Proof. Due to the Theorem 1 we know that the quadrilateral AFCM in inscribed in a circum-
ference so the angles MFA and MCA are congruent. Therefore the angles MFA measures
60◦. For the same reason MFC = CFN = NFB = BFO = OFA = 60◦. So the angles
LFK = KFH = LFH = 120◦ and, as stated in Theorem 1, F is the Fermat point of LKH

We are able also to calculate the area of the triangle LKH as a function of the lengths of
the side of ABC. In fact
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Theorem 12. Given a triangle ABC, with AB = a, BC = b, AC = c and area A. If FA = x,
FB = y and FC = z then

ALKH =

√
3

2

xyz(xy + xz + yz)

(x+ y)(x+ z)(y + z)

with

x =
a2 + b2 − c2 + 4A√

3

2ℓ
y =

−a2 + b2 + c2 + 4A√
3

2ℓ
z =

a2 − b2 + c2 + 4A√
3

2ℓ

and

ℓ =

 
a2 + b2 + c2

2
+ 2A

√
3

.

Figure 1.1: Image related to the proof of Theorem 12

Proof. According to Fig. 1.1 we know that sin(AFC) = sin(LFA) = sin(LFC) = and

1

2
xz sin(AFC) =

1

2
xFL sin(LFA) +

1

2
zFL sin(LFC)

so
xz = xFL+ zFL ⇒ FL =

xz

x+ z

For the same reason
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FH =
yz

y + z
and FK =

xy

x+ y
.

Now

ALHK = ALFH +AKFH +ALFK

=
1

2
FL · FH sin(LFH) +

1

2
FK · FH sin(KFH) +

1

2
FL · FK sin(LFK)

=

√
3

2

xyz(xy + xz + yz)

(x+ y)(x+ z)(y + z)

We can observe that, if we call A the area of ABC and ℓ = x+ y + z = MB = AN = CO,

A+AMAC = AMFC +ACFB +AFMA +AAFB

=
1

2
(ℓ− y) · z ·

√
3

2
+

1

2
zy

√
3

2
+

1

2
x(ℓ− y) ·

√
3

2
+

1

2
xy

√
3

2

=

√
3

4
(x+ z)ℓ

and, due to AMAC =

√
3

4
c2,

4A+
√
3c2 =

√
3(x+ z)ℓ

.
Similarly


4A+

√
3c2 =

√
3(x+ z)ℓ

4A+
√
3b2 =

√
3(y + z)ℓ

4A+
√
3a2 =

√
3(x+ y)ℓ

by solving

x =
a2 + b2 − c2 + 4A√

3

2ℓ
y =

−a2 + b2 + c2 + 4A√
3

2ℓ
z =

a2 − b2 + c2 + 4A√
3

2ℓ

1.6 Equilateral triangles

Next we focused on the properties of the Fermat point of an equilateral triangle. Let’s consider
a generic equilateral triangle ABC with Fermat point F .
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We can prove the following theorem about other properties of the Fermat point.

Theorem 13. The Fermat point F of a equilateral triangle ABC coincides with the circumcen-
ter, the geometric center and the incenter of ABC:

F ≡ G ≡ I ≡ C′

Proof. Let’s consider the bisectors of the three angles of the triangle. Since ABC is equilateral,
these all intersect on the incenter I, which is the same of the geometric center G and the
circumcenter C ′.
Let’s consider the triangle IBC. Since the inner angles of ABC all measure

π

3
, the angles IBC

and ICB respectively measure
π

6
and therefore the angle BIC is:

IBC = π − 2 · π
6
=

2π

3

We can repeat this process for the other triangles and find that AIC and AIB are also angles

of
2π

3
. Therefore I is the Fermat point F of ABC.

We can then build the wrapping triangle DEM of the Fermat point F of ABC.
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Theorem 14. The wrapping triangle DEM of the Fermat point of the equilateral triangle ABC
is an equilateral triangle.

Proof. We can prove that EMD is equilateral by simply applying Thales’ theorem. All the
three sides of the triangle EMD are indeed just half of the sides of ABC and therefore EMD
is equilateral.

Next, we can build the circumferences inscribed in the triangles AFC, BFC and AFB. We
thus obtain

Theorem 15. Given a equilater triangle ABC, the circumferences inscribed in the triangles
AFC, BFC and AFB,having respectively centers in the points X, Y , Z, then

the triangle XY Z is yet another equilateral triangle, which has the same Fermat point of the
ABC:

XY ∼= Y Z ∼= ZX

F ≡ FXY Z
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Proof. Let’s consider the lines ZC, Y A and XB. We can easily prove that they all are bisectors
of the angles ACB, CAB and CBA respectively. Therefore, the points X, Y and Z all belong
to the lines used to find F and, as in the previous case we have that the Fermat point of the
triangle XY Z coincides with F .
To prove that the triangle XY Z is equilateral, we can simply note that the triangles ABF , BFC
and CFA are congruent. Given that, we have that the radius of the inscribed circumferences
are also congruent and so are the sides of XY Z, being just two times the radius itself.

1.7 Generalizing Fermat point: the T points

Recalling the definition of Fermat point (see Definition 1) we can generalize its definition by
constructing isosceles triangles on the sides of the triangle in the following way:

Theorem 16. In a triangle ABC the segments whose endpoints are a vertex of ABC and the
vertex that doesn’t belong to the triangle of the isosceles triangle built on the opposite side with
an angle 0 < ϕ < π

2 , all intersect on a single point T .

Proof. The proof uses Ceva’s theorem which states that given a triangle ABC, let the lines ,
AT , BT , CT be drawn from the vertices to a common point T (not on one of the sides of ABC),
to meet opposite sides at I, G, H respectively. Then

CG

GA
· AH
HB

· BI

IC
= 1

The converse of Ceva’s theorem is also true and we are going to use this version.
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According to the sine law

CG

sin(GDC)
=

DG

sinϕ
⇒ CG =

DG sin(GDC)

sinϕ

GA

sin(ADG)
=

DG

sinϕ
⇒ GA =

DG sin(ADG)

sinϕ

so

CG

GA
=

sin(GDC)

sin(ADG)

similarly

AH

HB
=

sin(AEH)

sin(HEB)

BI

IC
=

sin(IFB)

sin(IFC)

then
CG

GA
· AH
HB

· BI

IC
=

sin(GDC)

sin(ADG)
· sin(AEH)

sin(BEH)
· sin(IFB)

sin(IFC)

now

DB

sin(DCB)
=

CB

sin(BDC)
⇒ sin(BDC) =

CB

DB
sin(DCB)

AB

sin(ADB)
=

DB

sin(DAB)
⇒ sin(ADB) =

AB

DB
sin(DAB)

then

sin(GDC)

sin(ADG)
=

CB sin(DCB)

AB sin(DAB)

in the same way
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sin(AEH)

sin(BEH)
=

AC sin(CAE)

CB sin(CBE)

and

sin(BFI)

sin(CFI)
=

AB sin(ABF )

AC sin(ACF )

so

CB sin(DCB)

AB sin(DAB)
· AC sin(CAE)

CB sin(CBE)
· AB sin(ABF )

AC sin(ACF )
= 1

We will call these points the T points.

1.7.1 T points analytical coordinates

Let’s consider a triangle with A(0; 0), B(xB; 0), C(xC ; yC) ∈ R2.

Let’s now build the isosceles triangles ABG and ACD on the sides AB and AC with an
angle 0 < ϕ < π

2 .

To find the coordinates of D(xD; yD), we need to find the intersection between the axis s
of the segment AC and the straight line r passing through A and C ′ (C rotated by ϕ around
A(0; 0)).
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Now to find the equation of the straight line r we need the Cartesian coordinates of C ′.
The rotation matrix Rϕ to rotate a point C(xc; yc) around the origin A(0; 0) by an angle ϕ
counterclockwise is given by:

Rϕ =

ï
cosϕ − sinϕ
sinϕ cosϕ

ò
By applying the rotation matrix to the point C(xc; yc), we obtain the new coordinates (x′c; y

′
c):ï

x′c
y′c

ò
=

ï
cosϕ − sinϕ
sinϕ cosϕ

ò ï
xc
yc

ò
Expanding the matrix product, we obtain:ï

x′c
y′c

ò
=

ï
xc cosϕ− yc sinϕ
xc sinϕ+ yc cosϕ

ò
The coordinates of the D points will be the solution of the system that contains the equations

of the lines r and s. 
y = −xC

yC
x+

x2C + y2C
2yC

y =
yC′

xC′
x

D

Ç
xC′(x2

C + y2
C)

2(xCxC′ + yCyC′)
,

yC′(x2
C + y2

C)

2(xCxC′ + yCyC′)

å
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Now we search the coordinates of G.
To find the coordinates of G(xG; yG), we can note that the abscissa is the same as the one

of the midpoint of the segment AB and the ordinate can be obtained using simple trigonometry
on the triangle AMG.

G

Å
xB

2
,−

tanϕxB

2

ã
Once we have found the coordinates of D and G, we can continue tracing the line passing

through D and B and the line through G and C. Let’s call their intersection T .

Finally, by substituting these pairs of points we find the equations of the lines DB and GC
which, when put in a system together, will allow us to express the analytical coordinates of
T (xT ; yT ).
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y = − yD

xD − xB
x− yDxB

xD − xB

y =
yG − yC
xG − xC

x+
xGyC − xCyG

xG − xC

and finally:

T

Å
xB[t(yC + xC · tanϕ) + v]

t(2yC + xB · tanϕ) + v
,

xB · v[tanϕ(xC − xB) − yC ]

(xB − 2xC)[t(2yC + xB · tanϕ) + v]

ã
with

� t = (xC − 2xB) cosϕ− yC · sinϕ

� v = (xC · sinϕ+ yC · cosϕ)(xB − 2xC)

1.7.2 T points Hyperbola

Let’s consider a generic triangle ABC, by changing the value of ϕ we can notice a geometric
locus of T points, which is a hyperbola I. Some of the most famous points such as the Fermat
point F , the geometric center G and the orthocentre H belong to it. In fact

G = lim
ϕ→0

T (ϕ) F = T
(π
3

)
H = lim

ϕ→
π

2

T (ϕ) B = T (−ABC) C = T (π −ACB)

Example

Let’s consider again the triangle ABC with A(0; 0), B(7; 0) and C(2; 3). We can calculate the
coordinates of the points

H

Å
2;

10

3

ã
G (3; 1) Tπ

4

Å
7

3
;
14

9

ã
F

Ç
273 + 119

√
3

218
;
441 + 427

√
3

654

å
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and then we obtain the equation of the hyperbola with equation

I : x2 − y2 +
20

3
xy − 7x− 7y = 0

with eccentricity e =
√
2 and center

Å
273

218
;
147

218

ã
called Kiepert hyperbola.
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Chapter 2

Quadrilaterals

In this chapter we analyse Femat point in quadrilaterals. Since quadrilaterals can be either
convex or concave, we analysed both cases. The first thing we did was extending the definition
of Fermat point to n sided polygons:

Definition 2. The Fermat point F of a polygon with n vertices is the point of the polygon which
minimizes the sum of the distances from the vertices.

2.1 Fermat point in convex quadrilaterals

Theorem 17. In a convex quadrilateral the Fermat point is the intersection of the diagonals.

Proof. Let’s consider a point E inside the quadrilateral ABCD. For the triangular inequalities,
the diagonal AC is never bigger than AE + CE. Similary the diagonal BD is never bigger than
BE + DE. The sum of the diagonals AC + BD is never bigger than the sum of the segments
AE + BE + CE + DE.
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AC ⩽ AE + CE

BD ⩽ BE +DE

AC = AF + CF

BD = BF +DF

Substituting :®
AF + CF ⩽ AE + CE

BF +DF ⩽ BE +DE

Reducing :

AF +BF + CF +DF ⩽ AE + CE +BE +DE

2.2 Fermat point in concave quadrilaterals

Theorem 18. In a concave quadrilateral the Fermat point lies on the vertex of the concavity.

Figure 2.1: The quadrilateral ABCD with point E

Proof. Let’s consider the sum of the segments ED and EB. Its minimum occurs when the point
E belongs to the segment BD. Now let’s consider the sum of the segments EA and EC. Consid-
ering that the Fermat point must be inside the quadrilateral, the shortest way to go from A to
C is to pass through D. Thus we know that the point E must belong to one of those segments.
To satisfy both conditions, the point must coincide with D.

This is summarised by the following inequalities:
AD ⩽ AE +DE

CD ⩽ CE +DE

AD ⩽ AE

CD ⩽ CE
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2.3 Theorems regarding Fermat point in parallelograms

In the next theorems we describe two properties of the Fermat point in parallelograms:

Theorem 19. In a parallelogram ABCD, the quadrilateral whose vertices are the Fermat points
of the triangles AFB, ADF, DCF and BFC is a parallelogram and has the same Fermat point
of ABCD.

Figure 2.2: A parallelogram ABCD and the parallelogram F1F2F3F4.

Proof. ADF is symmetrical to BCF with respect to F and, similarly, ABF is symmetrical to
CDF with respect to F. This is because A is symmetrical to C, B is symmetrical to D and F is
symmetrical to itself.

Figure 2.3: The parallelogram ABCD and its Fermat point.

So the Fermat points of ABF (F1) and CDF (F3) are symmetrical. So F is the midpoint of the
segment F1F3.
Similarly, the Fermat points of BCF (F2) and ADF (F4) are symmetrical. So F is the midpoint
of the segment F2F4.
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Figure 2.4: The parallelogram ABCD with the Fermat point of ABF, BCF, CDF, ADF

Since F is the midpoint of the digonals of the quadrilateral F1F2F3F4, the quadrilateral F1F2F3F4

is a parallelogram

Theorem 20. In a parallelogram ABCD, the Fermat’s point of the quadrilateral constructed to
the Fermat point of the triangles ABC, ACD, ABD and BCD is a parallelogram and has the
same Fermat’s point of ABCD.

Figure 2.5: The parallelogram ABCD and the parallelogram F1F2F3F4.

Proof. ABC is symmetrical to ACD with respect to F and, similarly, BCD is symmetrical to
ABD with respect to F because A is symmetrical to C and B is symmetrical to D.

Figure 2.6: The parallelogram ABCD and its Fermat point.
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So the Fermat points of ABC (F3) and ACD (F1) are symmetrical with F being their center
of symmetry and so are the Fermat points of BCD (F2) and ABD (F4). So F is the midpoint of
the segment F1F3 and F2F4.

Figure 2.7: The parallelogram ABCD with the Fermat points of ABC, BCD, ACD, ABD

Since F is the midpoint of the diagonals of the quadrilateral F1F2F3F4, the quadrilateral
F1F2F3F4 is a parallelogram
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Chapter 3

Regular polygons

Moving on to regular polygons, we assumed the Fermat point to be the intersection of the di-
agonals, as it was in the quadrilaterals.

3.1 Fermat point

3.1.1 Even number of sides

If the polygon has an even number of sides, we can see that the diagonals do intersect in a single
point, that being the center of the polygon and its Fermat point.

3.1.2 Odd number of sides

Contrarily, if the polygon has an odd number of sides, the diagonals do not intersect in a single
point. Despite this, we were able to prove that indeed, for any regular polygon, the Fermat
point coincides with the center of the polygon.
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3.1.3 Proof

The proof of both cases proceeds by contradiction:

Proof. We first assume the Fermat point is not the center of the polygon and we thus choose a
random point inside the polygon.

As we can see in the picture, because of the symmetry of the polygon, whatever point we
choose is equivalent to the highlighted points.
Since we know the Fermat point is unique (the sum of the distances from the vertices strictly
convex and defined in a compact set; see Chapter 4) and that the center of the polygon is the
only point that is not equivalent to other symmetric ones, we conclude that, indeed, F coincides
with the center of the polygon.

3.2 Rotated polygons

Let’s now consider another regular polygon, with more than three sides, where ℓB denotes the
length of its sides.
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We construct the triangles by connecting the vertices to the center of the polygon, as shown
in the picture, and we find their Fermat points.

If we connect them as shown here, we obtain another regular polygon that is similar to the
starting one. Furthermore, we can show that:

ℓS = ℓB ·
2
√
3
sin

(π
3

−
π

n

)
where ℓS denotes the length of the sides of this polygon. In fact, according to the law of

sines in the triangle ERO,
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RS

ED
=

RU

EL
=

RO

EO
=

sin
(π
3
− π

n

)
sin

Å
2π

3

ã
Obviously, we can repeat this process iteratively to obtain progressively smaller polygons:

It is worth noting that if we let the number of sides go to infinity,
π

n
approaches zero and the

whole expression simplifies to just ℓB, meaning that the polygon obtained is almost identical to
the original one and the Fermat point approaches the base of the triangle according with the
theorem 9.

lim
n→+∞

ℓB · 2√
3
sin
(π
3
− π

n

)
= ℓB
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Chapter 4

Approximations

In this last chapter we are going to find an iterative method to approximate the Fermat point
of a generic polygon.

4.1 Sum function

Let’s consider a polygon with n ∈ N− {0, 1, 2} vertices V1(x1; y1), V2(x2; y2)...Vn(xn; yn).
We define the Sum function S : C ⊆ R2 → R to be the sum of all the euclidean distances of a
point in the Cartesian plane from the vertices:

S(x, y) =
n∑

k=1

»
(x − xk)2 + (y − yk)2

−5
0

5 −5

0

50

20

40

Figure 4.1: Graph of S for a polygon with vertices V1(0; 0), V2(5; 0), V3(3; 3)

We can easily see that the function S can be defined in any subset C of R2:

Dom(S) = C ⊆ R2
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4.2 Contour lines

Next we can analyze the behavior of the contour lines L(S, k) of the function S:

L(S, k) :
n∑

k=1

»
(x− xk)2 + (y − yk)2 = k

We can see that this equation has real solutions only for values of k going from S(xF ; yF ) to
+∞:

Figure 4.2: Contour lines of the function S

Therefore we can deduce that the image set Im(S) of the function S is:

Im(S) = [S(xF , yF ),+∞]

where S(xF , yF ) is the value of the function on the Fermat point.

min(S) = S(xF , yF )

4.3 Gradient descent

In order to find an approximation of the minimum of the function S, we can apply the gradient
descent method.
We can take the partial derivatives with respect to x and y of S(x, y):

∂

∂x
S(x, y) =

∂

∂x

n∑
k=1

»
(x− xk)2 + (y − yk)2 =

n∑
k=1

x− xk√
(x− xk)2 + (y − yk)2

∂

∂y
S(x, y) =

∂

∂y

n∑
k=1

»
(x− xk)2 + (y − yk)2 =

n∑
k=1

y − yk√
(x− xk)2 + (y − yk)2

37



and therefore compute the gradient vector as:

∇S(x, y) =

Å
∂S

∂x
;
∂S

∂y

ã
=

(
n∑

k=1

x − xk√
(x − xk)2 + (y − yk)2

;

n∑
k=1

y − yk√
(x − xk)2 + (y − yk)2

)

We can see that the function S is differentiable on every point of the plane except for the
vertices of the polygon.
Since S(x, y) is strictly convex and defined in compact set, it has a unique minimum F (xF ; yF ),
whose coordinates can be approximated with the following iterative formula:

Fm+1 = Fm − λ∇S(xm, ym)

where λ ∈ R+.

4.4 Example

Let’s now consider the specific case of a triangle (n = 3) with vertices A(0; 0), B(3; 0) and
C(1; 1). To find a good approximation of the Fermat point F , we can start from a random
point, like F0(−2; 1) and compute the next coordinates with the gradient descent method. The
results of the first 30 iterations result to be:

m xFm yFm

0 −2.000 1.000

1 0.875 0.356

2 1.121 0.787

3 0.755 0.702

4 1.512 0.519

5 0.918 0.544

6 1.126 0.706

7 0.929 0.729

8 1.156 0.739

9 0.957 0.715

10 1.068 0.738

11 1.025 0.751

12 1.032 0.762

13 1.031 0.769

14 1.031 0.773

m xFm yFm

15 1.030 0.775

16 1.030 0.777

17 1.030 0.778

18 1.030 0.779

19 1.030 0.779

20 1.030 0.779

21 1.030 0.779

22 1.030 0.779

23 1.029 0.779

24 1.030 0.779

25 1.029 0.779

26 1.029 0.779

27 1.029 0.779

28 1.029 0.779

29 1.029 0.779

Since the polygon we have just considered is a triangle with one vertex on the origin, we
can compare the coordinates of the approximated point to the values got with the analytical
formula we proved before, and compute the errors εxi = |xFi − xF | and εyi = |yFi − yF | on the
x and y coordinates:
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m xFm yFm εxi εyi

0 −2.000 1.000 3.029 0.221

1 0.875 0.356 1.875 0.644

2 1.121 0.787 0.246 0.431

3 0.755 0.702 0.366 0.085

4 1.512 0.519 0.757 0.183

5 0.918 0.544 0.594 0.025

6 1.126 0.706 0.208 0.162

7 0.929 0.729 0.197 0.023

8 1.156 0.739 0.227 0.010

9 0.957 0.715 0.199 0.024

10 1.068 0.738 0.111 0.023

11 1.025 0.751 0.043 0.013

12 1.032 0.762 0.007 0.011

13 1.031 0.769 0.001 0.007

14 1.031 0.773 0.000 0.004

m xFm yFm εxi εyi

15 1.030 0.775 0.000 0.002

16 1.030 0.777 0.000 0.002

17 1.030 0.778 0.000 0.001

18 1.030 0.779 0.000 0.001

19 1.030 0.779 0.000 0.000

20 1.030 0.779 0.000 0.000

21 1.030 0.779 0.000 0.000

22 1.030 0.779 0.000 0.000

23 1.029 0.779 0.000 0.000

24 1.030 0.779 0.000 0.000

25 1.029 0.779 0.000 0.000

26 1.029 0.779 0.000 0.000

27 1.029 0.779 0.000 0.000

28 1.029 0.779 0.000 0.000

29 1.029 0.779 0.000 0.000

We can see that after a few iterations we can get to some approximations of the Fermat
point up to more than three digital digits of precision.
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