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PROBLEM STATEMENT 

 

Let d ≠ 1 be an integer. Determine all numbers of the form  𝑎 + 𝑏√𝑑, 𝑎, 𝑏 ∈ ℤ, such that their inverses are of the 

same form (𝑎′ + 𝑏′√𝑑, 𝑎′, 𝑏′ ∈ ℤ). We assume that d is square-free (d ≠ 0 and 1 and d is not divisible with the 
square of any prime; d  can be 2, 3, -1, 6, …, but not 8 or 18). 
 
 

THE MAIN IDEA 
 

Let 𝑑 ∈ ℤ be a square-free integer and let us define the set  𝑀𝑑 = {𝑥 = 𝑎 + 𝑏√𝑑 𝑎, 𝑏 ∈ ℤ}. We define the norm 

of x by the function  𝑁(𝑥) = 𝑎2 − 𝑑𝑏2  ∈ ℤ . We will prove that 
dx M  has an inverse in 𝑀 𝑑  if and only if 

 ( ) 1,1N x   . 

 
Proof: 
 

Let  𝑥 ∈ 𝑀𝑑 , 𝑥 = 𝑎 + 𝑏√𝑑 , 𝑎, 𝑏 ∈ ℤ . We define the conjugate of x by 𝑥̅ = 𝑎 − 𝑏√𝑑, 𝑎 , 𝑏 ∈ ℤ .     

We may easily verify that ( )N x x x  . Moreover, it is trivial to prove that: 

 

; ( ) ( )xy x y N x N x    

 

The function 𝑁(𝑥) is multiplicative, since for every , dx y M  we have: 

 

( ) ( ) ( )N xy xy xy x y x y x x y y N x N y       

 

Suppose that 
dx M  has an inverse in Md, hence there exist 

dy M such that 1xy  . We may write: 

 

1 (1) ( ) ( ) ( )N N xy N x N y     

 

We conclude that N(x) admits an inverse and, moreover,  ( ) 1, 1N x   . 

Conversely, if ( ) 1N x   , then 1x x   , hence 
dx M  is the inverse of x. 

As a consequence, integers a and b verify the equation 2 2 1a db   . 
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SPECIAL CASE : d = -1 
 

In this case we have d i , the imaginary unit number. Let     𝑇 =
1

𝑎+𝑏√𝑑
, 𝑎, 𝑏 ∈ ℤ. Because 𝑇 is a part of the 

set Md, there must exist integers x and y such that T x y d   . Now we get: 

  
1

1x y d a b d x y d
a b d

     


. We notice that both terms in the left side of the equation 

are complex numbers, giving us a hint towards a good way to approach it. 
By applying the modulus operation to both sides and using the multiplicative property of the modulus, we get:  
 

2 2 2 21 1 1a b d x y d a b i x y i a b x y                 

 
By squaring both sides we finally get (𝑎2 + 𝑏2). (𝑥2 + 𝑦2) = 1, 𝑎, 𝑏, 𝑥, 𝑦 ∈ ℤ . Because the square of an integer is 
a natural number, we conclude that the only possible solutions for the d = -1 case are 𝑖, −𝑖, 1 and −1. 
 
 

SPECIAL CASE : d = 2 
 

The ancient Greeks were among the first to study the equation 2 22 1a b   motivated by the evaluation of the 

diagonal of a unit square that equals the irrational number 2  . As such, they generated arbitrarily close 

approximations of this number by using arbitrarily large solutions of the equation above 2 22 1n na b  , since we 

may write: 
2

2 2

1
2 2

i

i

y

i i

x

y y


     (1) 

 
Hence, if 𝑦𝑖  denotes the side of a square, 𝑥𝑖 represents its diagonal. Defining the “side” and “diagonal” numbers 
𝑠𝑖 and 𝑑𝑖  by the relations: 
 

 

2 2

1 1 1 1

2 2 2 2

1 1 1 1

3; 2 2 1

2 ; 2 2i i i i i i i i i i

d s d s

d d s s d s d s d s   

   



       

 

 

we conclude that odd-indexed numbers  ,i id s  represent solutions of the equation 2 22 1a b  , while even-

indexed pairs verify the closely related equation 2 22 1a b   . 

Let us further analyze the equations above, by searching integer numbers 𝑎, 𝑏 ∈ ℤ such that 2 22 1a b   . When 

1 appears in the right-hand side we obtain a positive Pell equation, while for -1 we get a negative Pell equation. 

Remark: Since every (a, b) solution of the Pell equations yields additional solutions of the form 

(𝑎, −𝑏), (−𝑎, 𝑏), (−𝑎,−𝑏), it will be sufficient to search for natural values of the a and b parameters. 

To start with, we remark that 1 23 2 2y M    has the norm equal to 1 and according to the proof above it is 

a solution of the associated Pell equation. Then the number:  
2

2

2 1 3 2 2 17 12 2y y      has also norm 1, 

because: 

2 1 1 1 1( ) ( ) ( ) ( ) 1N y N y y N y N y      
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Along the same line of thought, any power of the form 
1

n

ny y  has also norm 1 and will also represent a solution 

of the corresponding Pell equation. Moreover, we may prove by induction that such powers are distinct. More 

specifically, if  𝑦1
𝑛 = 𝑢 + 𝑣√2 , 𝑢, 𝑣 ∈ ℕ, then: 

     1

1 1 1 2 3 2 2 3 4 (2 3 ) 2n ny y y u v u v u v            

and since  3 4 , 2 3u v u u v v    we conclude that 
1

ny and 1

1

ny  are distinct. Hence, the Pell equation for 

d = 2 has an infinite number of solutions. (2) 

The number 
1 3 2 2y    is called the fundamental solution of the positive Pell equation, that is the non-trivial 

solution having the smallest value (the trivial solution of the equation is obtained for a = 1 and b = 0). Much similar, 

the number 1 2 represent the fundamental solution of the negative Pell equation. 

The general solution of the positive Pell equation 2 22 1a b    is obtained from the relation: 

 0 02 2
n

n na b a b    , where  ,n na b  satisfy the recursive relation below, and    0 0, 3, 2a b   is the 

fundamental solution: 

1 0 0

1 0 0

2n n n

n n n

a a a b b

b b a a b





 

 
 

 

The general solution of the negative Pell equation 2 22 1a b   is indicated by the recursive relations below: 

 

1 0 0

1 0 0

2n n n

n n n

a a x b y

b b x a y





 

 
 

 

where    0 0, 1,1a b  represents its fundamental solution, while  ,n nx y is the general solution of the associated 

positive Pell equation. 
 
 

THE GENERAL CASE 
 

We will first consider the positive equation 2 2 1a db  . In this case, since d is not a perfect square, we can find 

an infinite number of solutions. We denote by  0 0,a b the fundamental solution of the equation (smallest solution 

different from (1, 0)). We denote the sequence: 
 

1 0 1 0

1 0 0

1 0 0

;

n n n

n n n

a a b b

a a a db b

b b a a b





 

 

 

 

Solving this sequence we find the solutions: 
 

       0 0 0 0 0 0 0 0

1 1
;

2 2

n n n n

n na a b d a b d b a b d a b d
d

          
      

 

 

The negative equation 2 2 1a db    does not always have solutions (e.g., for d = 3). Much similar to the positive 

case, the general solution (when one exists) is given by the relation  
2 1

0 0

n

n na b d a b d


    , where 

 0 0,a b  denotes the fundamental solution. The general solutions defined above for the positive equation are valid 

also for the negative one, except that only odd values of n are permitted. 
 
 

Conclusion 
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The proposed problem enabled us to get a deeper understanding of the theory behind the celebrated Pell’s 
equation. We additionally found that this equation is related to square-triangular numbers (perfect squares that 
also represent Gaussian sums) and continuous fraction representation of quadratic irrational numbers. As such, 
we convinced ourselves once again that Gauss was right when stating that “Mathematics is the queen of the 
sciences and number theory is the queen of mathematics”. 
 
 
 
 
 
 

Notes d’édition 
 
(1) The ratings must be simplified and the use of terms “side” and “diagonal” seems irrelevant. 
So we propose :  

In order to approximate √2 , the ancient Greeks used arbitrarily large solutions of the equation 𝑥2 − 2𝑦2 = 1 
and if x and y are such that  x^2 − 2 y^2 = 1 and y is arbitrarily large, we have : 
𝑥2

𝑦2
 = 2 + 

1

𝑦2
  
𝑦→∞
→    2 

Hence 
𝑥

𝑦
  is an approximation of √2. 

  
(2)  The result has not been demonstrated, it has been accepted. 
 

 
 
 


