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1 Presentation of the research topic:

This year the Math.en.jeans workshop proposed to work with Egyptian fractions. Egyptians
used only fractions like 1

n such that n ∈N0 and did not know negative fractions. These frac-
tions will be called unitary fractions or unit fractions. We want to write proper irreducible
fractions a

b , such that a and b are non-zero natural numbers, as a sum of distinct unit frac-
tions. This sum is called Egyptian fraction.

2 Brief presentation of the conjectures and results obtained:

The aims of this article are to verify if we can always write a proper irreducible fraction a
b as an

Egyptian fraction; to verify if there are different and eventually infinite possible expansions;
to explore different ways to expand a proper fraction, comparing various methods in order
to understand if there is a preferable one, depending on the results they lead to.
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We studied Fibonacci’s method, Golomb’s method and a method based on practical num-
bers, retracing the original proofs, introducing new results and proposing some variants
to the methods. Most importantly, we observed that through Fibonacci’s algorithm every
proper fraction can be expanded into Egyptian fractions, and the ways to do that are infinite
in number.

We proposed a new original method based on a geometric approach to the problem.
We studied the tree composed of the unit fractions that expand a given proper fraction,

designing a function that allows to determine the terms of the tree. Thanks to the tree we
can also expand natural numbers and improper fractions.

MATh.en.JEANS 2017-2018 [I.S.I.S.S. "M.Casagrande", Pieve di Soligo, Treviso - Italie]
Page 2



Introduction

Egyptians used fractions as
1

n
with n ∈ N0 (we denote the set of non-zero natural numbers

by N0). These fractions will be called “unit fractions" (U.F.). Instead of proper fractions,
Egyptians used to write them as a sum of distinct U.F. So every time they wanted to express
a fractional quantity, they used a sum of U.F., each of them different from the others in the
sum. This expansion of a proper fraction is called “Egyptian fraction".

For example, the fraction
3

4
as an Egyptian fraction will not be

1

4
+ 1

4
+ 1

4
, but will be

1

2
+ 1

4
.

The first question someone could arise is: why did Egyptians use this particular method?
Even if there are many hypothesis, none of them is ascertained. The most accredited of
them is that they used U.F. to simplify practical suddivisions. Mathematically, it is easier
for us to think in terms proper fractions, but on a concrete level, it is simpler to operate with
unitary parts of a whole. On a document named “Rhind Papyrus" of Ahmes (one of the oldest
known mathematical manuscripts, dating from around 1650 B.C.) are listed in a table the
expansions of every proper fraction with 2 as numerator and from 3 to 101 as denominator.
This is one of the most important examples of Egyptian mathematics and represents the base
of Egyptian fractions.

There are various explanations as to why the Egyptians chose to use such representations
but perhaps the most compelling is the one given in the book “The Man Who Loved Only
Numbers" by the legendary mathematician André Weil:

He thought for a moment and then said: It is easy to explain. They took a wrong turn![11]

Approaching the subject some questions came up:

• Can we write every proper fraction as a sum of unit fractions?

• Are there different methods to decompose a proper fraction?

• Are there different types of decomposition?

• Are there infinite expansions for each proper fraction?

• Is there a best expansion? If so, would it be the shortest one or the one that leads to a
sum with the lowest denominators?

In the following chapters we will give some answers to these questions.

MATh.en.JEANS 2017-2018 [I.S.I.S.S. "M.Casagrande", Pieve di Soligo, Treviso - Italie]
Page 3



3 Fibonacci’s Method

The first way we propose was given by Fibonacci, also known as Leonardo Pisano, in 1202.
His method is to apply the greedy algorithm which consists in subtracting the largest pos-
sible U.F. from the given fraction so that the result is non-negative. We have to repeat this
on the remainder until we find a fraction that is itself a U.F. not equal to one already written
down.

3.1 The Greedy method.

We can note that:

Theorem 3.2. Subtracting the largest possible unit fraction that keeps a non negative differ-

ence from a proper irreducible fraction
a

b
, that is, such that

a

b
− 1

k
≥ 0, the resulting fraction

numerator is strictly less than the one of the initial fraction and the resulting fraction denom-
inator is strictly greater than the one of the initial fraction.

Proof. Chosen a non-zero natural number k, it must also be different from one. Indeed, if

we subtract from the proper fraction
a

b
the U.F.

1

1
(so with k = 1), the result will be negative.

If k ≥ 2 the difference between a proper fraction and a U.F. is:

a

b
− 1

k
= ka −b

bk
⇒ a

b
= 1

k
+ ka −b

bk

Since
1

k
is the largest unit fraction that we can subtract from

a

b
, then

1

k −1
> a

b

then multiplying both sides by b [1] we have

b

k −1
> a

and now [2]
b > a(k −1) ⇒ ka −b < a

Since k ≥ 2 the denominators of the fractions must be strictly increasing [3] .

Theorem 3.3. Given an irreducible proper fraction
a

b
, the Fibonacci algorithm produces an

expansion with at most a number of distinct unit fractions equal to the numerator (a).
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Proof. The previous theorem states that ka − b < a, ka − b > 0 and ka − b ∈ N. Then the
numerator strictly decreases after each step therefore the number of terms in the represen-

tation of
a

b
is at most a.

At last, the only way this method could go wrong would be if two of the fractions were
equal (in fact this is not allowed in Egyptian fractions). But this can’t happen because if we

had two successive terms
1

n
and

1

m
with n = m, we could have chosen

1

n −1
instead of

1

n
[4] .

Infact
1

n
+ 1

n
> 1

n −1
since n > 2.

Answer: Fibonacci’s Method guarantees that every proper fraction can be expanded into
an infinite number of distinct unit fractions.

3.4 The value of k

Operatively we can use this result:

Theorem 3.5. Given a irreducible proper fraction
a

b
[5] , holds

a

b
= 1

k
+ A

B
wi th k =

⌈
b

a

⌉
[5] and A < a

.

Proof. Assuming that:
a

b
− 1

k
> 0 ⇒ 1

k
< a

b
⇒ k > b

a
[6]

where k is the lowest denominator before
a

b
− 1

k
is less than 0.

From the theorem 3.2 holds A < a

Example: Let’s consider a proper fraction
a

b
where a is 791 and b is 3517 [7] .

So, if we want to find k, we have to divide 3517 for 791. In this case the result of
3517

791
is

4,4462705... So, k will be 5 because it is

⌈
b

a

⌉
. In symbols:

a

b
− 1

k
> 0 ⇒ 791

3517
− 1

5
> 0.

Therefore
791

3517
= 1

5
+ 384

17855
where 384 < 791.
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3.6 Number of unit fractions composing the sum

Fibonacci observed that it is possible to expand an irreducible proper fraction into a finite
number of unit fractions exactly by at most a number of addends equal to the value of initial
numerator.

Now that we have established a way (of course that is not the only one) to define k, we
are going to study the problem of searching the minimal number of U.F. the initial one can
be expanded by. We will start with the lowest number of U.F., which is, of course, 2 (we are
not going to consider 1 because it refers to a proper fraction which already is unit). As a
consequence we can say that:

a

b
− 1

k
= 1

p
.

As you can see, we have introduced a new variable, p.
We assume that p ∈N0 and now we have to find p using the other variables. Starting from

the previous equation, we come to:

ak −b

bk
= 1

p
⇒ p = bk

ak −b

so we can easily find the value of p if it is a natural number [8] .

But this is not the only Egyptian fraction that represents the given proper fraction. In fact,
there are infinite ways to come to that proper fraction summing U.F. Indeed, we can break
down not only fractions with numerator greater than 1, but we can expand unit fractions,
too.

Theorem 3.7. For all x ∈N0 holds:

1

x
= 1

x +1
+ 1

x(x +1)

Proof. If we have the difference:
1

x
− 1

y
where x and y are non-zero natural numbers, the

result will be
y −x

x y
. To guarantee that this difference is a U.F. we impose that y − x = 1, so

that y = x +1. As a consequence we can say that subtracting to a U.F. another U.F. which is
strictly less than it, the result will be a U.F., too. The formula is:

1

x
− 1

y
= y −x

x y
=⇒ 1

x
= 1

x +1
+ 1

x(x +1)

Thanks to this, we can prove that a proper fraction can be expanded into a sum of unit
fractions in an infinite number of ways.
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Example: Chosen a proper fraction
3

5
, using the Fibonacci’s method, we have to calculate

the value of k =
⌈

5

3

⌉
= 2. By subtracting from the proper fraction the U.F.

1

k
we come to:

3

5
= 1

2
+ 1

10

But now, thanks to the identity above, we can expand every single addend into other unit
fractions, and so on.

Example:
1

2
= 1

2+1
+ 1

2 · (2+1)
= 1

3
+ 1

6

1

10
= 1

10+1
+ 1

10 · (10+1)
= 1

11
+ 1

110

So
3

5
= 1

3
+ 1

6
+ 1

11
+ 1

110
.

The requirement of distinct fractions does not increase the number of fractions. In fact,
for n odd we can use the identity:

1

n
+ 1

n
= 2

n +1
+ 2

n(n +1)

that shows that the sum of two equal unit fractions with odd denominator can be written
as the sum of two distinct unit fractions.

For n even instead the sum of two equal unit fractions with even denominator can be
written as a single unit fraction.

1

n
+ 1

n
= 2

n

that shows that the sum of two equal unit fraction with even denominator can be written
as a single unit fraction.

Now we can expand every U.F. into other unit fractions.

Answer: There are infinite sums of distinct unit fractions that expand an irreducible
proper fraction [9] ..

3.8 Merits and limits

Fibonacci found an algorithm which is based on the greedy procedure as we have already
said, in which the largest possible unit fraction is chosen for each term of the expansion.
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Let’s make an example, such as
3

7
. Its greedy expansion will be:

3

7
= 1

3
+ 1

11
+ 1

231

It can be also written as
3

7
= 1

6
+ 1

7
+ 1

14
+ 1

21
[10]

As we can see, this second expansion has more terms, but the highest denominator is lower
than the Fibonacci’s one (231 vs 21).

Alternatively, we can write
3

7
as

3

7
= 1

4
+ 1

7
+ 1

28

that has three terms, like the greedy expansion, and 28 is the highest denominator, which is
lower than 231.

To sum up, Fibonacci’s algorithm is not the best method to find an expansion that gener-
ates the lowest denominators.

Now we want to discover if the algorithm does or does not lead to the shortest expansion.

Chosen a fraction
4

49
, by the greedy procedure it would be expanded into:

4

49
= 1

13
+ 1

213
+ 1

67841
+ 1

9204734721

but it can also be written as:
4

49
= 1

14
+ 1

98

so we have easily proved that the Fibonacci’s algorithm does not lead to the shortest expan-
sion.

Therefore the merits of this method are:

• It works with all proper fractions;

• It can break every proper fraction into an Egyptian fraction.

But its limits are:

• The denominators of the resulting fractions can grow quite big.

• It’s not always the shortest expansion.
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4 Golomb’s method

There is an algorithm due to American mathematician Solomon Wolf Golomb that we can
use in order to expand an irreducible proper fraction into unit fractions.

Given a positive proper fraction
a

b
, there exist two non-zero natural number A and B

such that a A = bB +1 [11] ; then:

a

b
= a A

b A
= bB

b A
+ 1

b A
= B

A
+ 1

b A

Since a A = bB +1 and a < b then a A > bB > aB , so 0 < B

A
< 1. We can apply the above

procedure for
B

A
(we can suppose that g cd(A,B) = 1 [12] ).

On the other hand, we have a A > bB > AB , hence B < a, which guarantees the finiteness
of the method.

Example:

Given a = 3,b = 7 such that
a

b
= 3

7
. We can find that 3A = 7B +1 with A = 5,B = 2. So

a

b
= 1

b A
+ B

A
⇒ 3

7
= 1

35
+ 2

5

Now we have to carry on with the fraction
B

A
= 2

5
. So, we can find that 2C = 5D +1 with

C = 3,D = 1. So

B

A
= 1

AC
+ D

C
⇒ 2

5
= 1

15
+ 1

3

Therefore

a

b
= 1

b A
+ B

A
= 1

b A
+ 1

AC
+ D

C
⇒ 3

7
= 1

35
+ 2

5
= 1

35
+ 1

15
+ 1

3

Now the problem is how to find the numbers A and B . The method that we will use is
based on Bezout’s theorem:

Theorem 4.1. (Bezout). For non-zero a and b in Z, there are x and y in Z, such that

g cd(a,b) = ax +by

In particular, when a and b are relatively prime, there are x and y in Z such that ax +by = 1.

MATh.en.JEANS 2017-2018 [I.S.I.S.S. "M.Casagrande", Pieve di Soligo, Treviso - Italie]
Page 9



The Equation g cd(a,b) = ax +by is called Bezout’s identity.

Since we can suppose that
a

b
is a fraction in lowest terms then g cd(a,b) = 1. Therefore

there are A and B in Z such that a A +bB = 1. Whereas a,b > 0 necessarily A and B can’t be
both positive. We would like B < 0, in fact for the Golomb’s method we use the theorem:

Theorem 4.2. Let a < b be positive integers with a 6= 1 and with g cd(a,b) = 1, and consider

the fraction 0 < a

b
< 1 then there exist a natural number 0 < A < b and a natural number B

such that
a A = bB +1

Proof. Bezout’s theorem says that there exist x and y in Z such that g cd(a,b) = ax +by , but
does not say that they are unique. It is possible to prove that exist infinite couples of integers
that satisfy the Bezout’s identity.

In fact, if x and y is one pair of Bezout’s coefficients then also all pairs(
x −k

b

gcd(a,b)
, y +k

a

gcd(a,b)

)
, with k ∈Z

satisfy the same identity [13] .
In fact if (x, y) is a solution pair of the equation and d = gcd(a,b) then

a

(
x −k

b

d

)
+b

(
y +k

a

d

)
= ax −ak

b

d
+by +bk

a

d
= ax +by = d .

We would like A > 0, B < 0 and A < b. But if we do not find such numbers we can choose
an integer number k such that makes A − kb > 0, B + ka < 0 and A − kb < b. We want to
prove that such number exist. Let a,b ∈Nwith a < b and A,B ∈Z such that a A+bB = 1 and

A ·B < 0, we can find A′ = A−kb and B ′ = B +ka such that A′ > 0, B ′ < 0 and A′ < b.

We have to take k ∈Z such that
A

b
−1 < k <−B

a
.

In fact if k <−B

a
then

A′ = A−kb > A+ B

a
b = a A+bB

a
= 1

a
> 0

and

B ′ = B +ka < B − B

a
a = B −B = 0

and if k > A

b
−1 then

A′ = A−kb < A+b

(
1− A

b

)
= A+b − A = b
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The last question is:
Is there such an integer number?

Let a,b ∈Nwith a < b and A,B ∈Z such that a A+bB = 1 and A ·B < 0,

∃k ∈Z :
A

b
−1 < k <−B

a
.

A number with these properties exists and it is k =
⌊

A

b

⌋

where bxc is the floor function that takes a real number x as input and gives as output the
greatest integer that is less than or equal to x.

It is clear from the definitions that bxc ≤ x < bxc+1, then
A

b
−1 <

⌊
A

b

⌋
.

But the following inequality holds too:

⌊
A

b

⌋
<−B

a
.

In fact,
A

b
>

⌊
A

b

⌋
⇒ A > b

⌊
A

b

⌋
. Since A and b

⌊
A

b

⌋
are integer numbers, then A ≥

b

⌊
A

b

⌋
+1 then

A

b
−

⌊
A

b

⌋
≥

b

⌊
A

b

⌋
+1

b
−

⌊
A

b

⌋
=

⌊
A

b

⌋
+ 1

b
−

⌊
A

b

⌋
= 1

b
> 1

ab
= a A+bB

ab
= A

b
+ B

a

Therefore
A

b
−

⌊
A

b

⌋
> A

b
+ B

a
⇒

⌊
A

b

⌋
<−B

a
.

Hence
a

b
= B

A
+ 1

b A
with 0 < A < b then A ≤ b −1 and so b A ≤ b(b −1).

We can repeat the procedure for every following step, in fact at each i -th step Ai < Ai−1

and so Ai · Ai−1 ≤ b(b −1).
Then the algorithm gives distinct unit fractions which have denominators at most b(b −

1).

The problem now is how to find an algorithm that finds the numbers A and B . Such
algorithm is the Euclidean algorithm.
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4.3 Euclidean algorithm

A constructive method for obtaining the Bezout’s identity terms is to use the extended Eu-
clidean algorithm. The Euclidean algorithm, or Euclid’s algorithm, is an efficient method
for computing the greatest common divisor (gcd) of two numbers, the largest number that
divides both of them without leaving a remainder.

Theorem 4.4. Given two non-zero natural numbers a and b with a < b, we divide
b

a
and

assign the remainder of the division to r. If r = 0 then a= gcd(a,b) otherwise we assign a = b and
b = r and repeat the division again.

The Euclidean algorithm is basically a continual repetition of the division algorithm for
integers. The point is to repeatedly divide the divisor by the remainder until we get 0. The
gcd is the last non-zero remainder in this algorithm. Keeping in mind the quotients obtained
during the algorithm development, two integers p and q can be determined such that ap +
bq = gcd(a, b).

4.5 Method for Egyptian fractions

Let’s consider a positive proper fraction
a

b
:

(1) Find A and B of the Bezout’s Identity using the Euclidean algorithm then a A+bB = 1;

(2) If 0 < A < b and B < 0 then go to the next step;

else we calculate A′ = A −kb and B ′ = B +ka with k =
⌊

A

b

⌋
and, for the theorem 4.2

with get 0 < A′ < b and B ′ < 0 and now go to the next step;

(3) Use the Golomb’s method

Example:

Let’s consider the fraction
a

b
= 38

121

(1) We find two numbers A and B with the Euclidean algorithm:

121 = 38 ·3+7

38 = 7 ·5+3

7 = 3 ·2+1

3 = 1 ·3+0
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Let’s start with the second-last identity: we explicit 1 and we substitute in it the number
3 made explicit in the immediately preceding equation.

1 = 7−3 ·2

1 = 7− (38−7 ·5) ·2

We group the common factors and we continue to substitute the rest of the previous
equation (proceeding from bottom to top) until an expression is obtained in the num-
bers A and B .

1 = (121−38 ·3)− {[38− (121−38 ·3) ·5] ·2}

1 = 121 ·11+38 · (−35)

At the end 38A+121B = 1 ⇒ A =−35,B = 11

(2) However A and B do not respect the desired conditions then we have to calculate

k =
⌊

A

b

⌋
=

⌊−35

121

⌋
= b−0.2c =−1

Therefore

A′ = A−kb = 86 and B ′ = B +ka =−27 ⇒ A′ > 0,B ′ < 0, A′ < b

(3) Now 38 ·86+ (−27) ·121 = 1 (Bezout’s identity) then 38 ·86 = 27 ·121+1 and we can use
the Golomb’s method:

38

121
= 38 ·86

121 ·86
= 27 ·121+1

121 ·86
= 27

86
+ 1

121 ·86
= 27

86
+ 1

10406

We have to repeat the same procedure until the proper fraction
a

b
will be expanded as the

sum of unit fractions, obtaining an Egyptian fraction.

4.6 Observations

The Golomb’s algorithm is better than the Fibonacci one because the denominators are guar-
anteed to be less than b(b −1).

The Golomb’s denominators are not always greater than the Fibonacci’s one, but while
using Golomb’s method there is a bound for the denominators, using the Fibonacci’s method
they can grow quite big.
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5 Method of practical numbers

In order to create a unit fraction expansion of a proper irreducible fraction
a

b
we noticed

that if a can be written as the sum of divisors of b, then we can easily reach our goal and, in

particular,
a

b
can be expanded with denominator always less than b itself.

Therefore to expand a given fraction with the numerator that can be expressed as a sum

of denominator divisors as sum of Egyptian fractions, we express
a

b
as sum of fractions with

numerator a divisor of b over b.
For example:

a

b
= 7

12
D12 = {1,2,3,4,6,12}

And so
7

12
can be expressed as sum of:

7

12
= 1

12
+ 2

12
+ 4

12
;

7

12
= 3

12
+ 4

12
;

7

12
= 1

12
+ 6

12

And simplifying all the equations we obtain sums of Egyptian fraction:

7

12
= 1

12
+ 1

6
+ 1

3
;

7

12
= 1

4
+ 1

3
;

7

12
= 1

12
+ 1

2

If the denominator of an irreducible fraction proper is a practical number then this tech-
nique allows to expand all the proper fractions with that denominator.

5.1 Practical numbers

Definition 5.2. A practical number is a natural number N such that for all n < N , n ∈N0 then
n can be written as the sum of distinct divisors of N .

Hence we thought to divide the set of natural numbers N into two subsets: the set of
practical numbers and the set of not practical numbers.

However, we wondered if this division of N is useful, because we don’t know how many
practical numbers there are. It is possible to prove that the first practical number are 1, 2, 4,
6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54... but the question is: how many are they?

We will prove they are infinite and in order to do this we follow the proof for the prime
numbers offered by Euclide and published in his work Elements (Book IX, Proposition 20).

Theorem 5.3. (Euclide’s Theorem) Prime numbers are more than any assigned multitude of
prime numbers.

MATh.en.JEANS 2017-2018 [I.S.I.S.S. "M.Casagrande", Pieve di Soligo, Treviso - Italie]
Page 14



Proof. Let’s assume that p1, p2, ..., pn is any finite list of prime numbers. We want to show
that there is one additional prime number that is not in this list. Let P be the product of all
the prime numbers in the list, that is P = p1 ·p2 · ... ·pn and let q = P +1.

• If q is a prime number, then there is at least one more prime that is not in the list.

• If q is not a prime number, then there is a prime factor p that divides q . So p divides
q and also P then p would divide the difference of the two numbers, which is 1. Since
no prime number divides 1, p cannot be on the list. This means that at least one more
prime number exist beyond those in the list.

This proves that for every finite list of prime numbers there is a prime number not on the
list.

This Theorem states that the set of prime numbers is infinite.
Also the practical numbers are infinite, to prove this we have to introduce the following

theorem:

Theorem 5.4. The product of two practical numbers is a practical number.

Proof. Given p1 and p2 practical numbers with p1 < p2 [14] ,

• if n ∈N and n < p1 we can write n as a sum of divisors of p1 but the divisors of p1 are
also divisors of p1 ·p2 therefore n is sum of divisors of p1 ·p2;

• if n ∈ N and 1 ≤ n < p2 since p2 practical, then n is sum of divisors of p2 that is n =∑
di∈Dp2

di with Dp2 the set of divisors of p2 then p1n = ∑
di∈Dp2

p1di but all the p1di

are divisors of p1p2 since the products between p1 and a divisor of p2 are divisors of
p1p2 (di divide p2). Therefore all the p1n can be written as a sum of divisors of p1p2.

• if n ∈N and n is between two p1n consecutive p1n1 and p1n2 [15] then it can be writ-
ten as n = pi n1 +∑

δi∈Dp1
δi . Since both the adds can be written as sun of divisors of

p1p2 then also n is a sum of divisors of p1p2.

Therefore each n less then p1p2 is a sum of divisors of p1p2 then p1p2 is practical.

Basing on the Theorem 5.4 and following the proof of Euclide’s Theorem we can state this
theorem:

Theorem 5.5. Practical numbers are more than any assigned multitude of practical numbers.

Proof. Consider any finite list of practical numbers p1, p2, ..., pn . It will be pointed out that
there is at least one more practical number that is not on the list. Called P the product of all
the practical number on the list P = p1 ·p2 · ... ·pn . P is practical for the Theorem 5.4, and P
is different from all the practical numbers in the list.

Therefore there is one more practical number that is not in the list. This proves that for
every finite list of practical numbers there is a practical number not on the list
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Hence the set of pratical numbers is infinite:

Definition 5.6. A set A is said to be finite, if A is empty or there is n ∈ N and there is a bijection
f : {1, ...,n} → A. Otherwise the set A is called infinite [16] .

Definition 5.7. Two sets A and B are equinumerous or of the same cardinality if there exists a
bijection f : A → B. We then write A ∼ B or |A| = |B |.
Definition 5.8. A set A is called countably infinite if |A| = |N|. A is countable if it is finite or
countably infinite. If it is not countable it is uncountable.

Theorem 5.9. Every infinite subset ofN is countably infinite.

Theorem 5.10. If A is a infinity subset ofN then A is countable.

Theorem 5.11. The subset ofN of practical numbers is infinite.

Theorem 5.12. The subset ofN of practical numbers is countably infinite set i.e. with the same
cardinality ofN (ℵ0).

We can conclude the practical numbers are as many as the natural numbers and then a
reasonable number for divide the setN and to use this method to expand a fraction.

The problem now is if the denominator is a not practical number.

5.13 Non-practical numbers

If the denominator b of the fraction is not a practical number we need, if it exists, a natural
number k such that bk is a practical number.

We need these theorems:

Theorem 5.14. The product of the first prime numbers is a practical number.

Proof. We use the induction technique:
Base case is with n = 2 and is true because 2 is a practical number.
Inductive step: we show that if p = 2 ·3 · ... ·pn is practial then pT = 2 ·3 · ... ·pn ·pn+1 is also

practical.

• if n ∈N and n ≤ p then is a sum of divisors of p for inductive hypothesis then is a sum
of divisors of pT (each divisors of p is divisors of pT ).

• if n is between two kp consecutive k1p and k2p then n =λ+k1p with λ< p then λ is a
sum of divisors of pT and k1p = pn+1 ·q + r with q < p [17] and r < p then also q and
r are sums of divisors of pT .

pn+1 is prime then pn+1di , with di divisor of p, is a divisor of pT then pn+1q = pn+1(d1 ·
... ·dm = pn+1d1 + ...+pn+1dm is a sum of divisors of pT then kp is a sum of divisors of
pT then n is a sum of divisors of pT .

Therefore all the numbers less than pT are sum of divisors of pT then pT is practical.
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Theorem 5.15. The product of a practical numbers by one of his divisor is a practical number.

Proof. Given p a practical number and d its divisor,

• if n ∈N and n < p then n is a sum of divisors of p then n is a sum of divisors of pd (if a
number divide p then divide pd),

• if n is between two kp consecutive k1p and k2p (k1,k2 < d) then n = k1p+r with r < p
then r is a sum of divisors of pd for the point above [18] .

d divide p then exists λ such as k1p = k1λd with k1λ< p then k1λ is a sum of divisors
of p then k1λ = ∑

dl∈Dp dl then k1p = ∑
dl∈Dp ddl . Since dl ∈ Dp ⇒ ddl ∈ Dpd [19]

(Dpd = Dp ∪d ·Dp ) then for all l ddl ∈ Dpd then k1p is a sum of divisors of pd . Then n
is a sum of divisors of pd .

Therefore all the numbers less than pd are sum of divisors of pd then pd is practical.

Theorem 5.16. The product of powers of the first prime numbers is a practical number.

Proof. This theorem is direct consequence of the theorems 5.14 and 5.15 indeed a product
of powers of the first prime numbers is the product of the of the first prime numbers times
some its divisors.

The previous theorems guarantee that there is a factor that makes the denominator a
practical number. We choose k equal to the product of the prime number in order to com-
plete the list of the first prime of the decomposition of b.

Example:
a

b
= 7

10
; b = 2 ·5

Now, the first prime number that do not appear in the expansion of b is 3 and so k = 3. So, to

have another equivalent fraction of the original one we have to multiply
a

b
for

k

k
and we get:

7

10
= 7

10
· 3

3
= 21

30

The fact that we obtain 30 that is a practical number, let us express
a

b
as sum of fractions with

numerator a divisor of 30 over 30.
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5.17 Observations

Our method is not perfect. It guarantees the possibility of finding one expansion of the frac-
tion but we will not get all the existing expansions and it does not guarantee that it is the
best, neither the shortest nor the one with the smallest denominators.

Example. Let the fraction
7

8
where 8 is practical. With our method we can expand

7

8
= 4+2+1

8
= 1

2
+ 1

4
+ 1

8

but we can multiply the denominator by 3 and we get an other different expansion:

7

8
= 21

24
= 12+8+1

24
= 1

2
+ 1

3
+ 1

24

Example. Let the fraction
4

7
where 7 is not practical. Our method states that we have to

multiply the denominator by 2 ·3 ·5 = 30. In this case we can multiply by 2. The denominator
becomes 14 that is not a practical number but the new numerator is sum of divisors of 14 in
fact 8 = 1+7 so:

4

7
= 8

14
= 7+1

14
= 1

2
+ 1

14
in order to find a practical denominator we have to multiply by 4 that is less than the number
proposed by our method.

Example.
Let us follow others different ways:

• First of all we try our procedure.

3

7
= 3 ·30

7 ·30
= 90

210

90

210
= 1

3
+ 1

14
+ 1

42
;

90

210
= 1

3
+ 1

15
+ 1

35
;

• Now we find another coefficient that makes the denominator practical.

3

7
= 3 ·12

7 ·12
= 36

84

36

84
= 1

3
+ 1

12
+ 1

84
;

36

84
= 1

4
+ 1

6
+ 1

84
;

• And we do it again using another different way.

3

7
= 3 ·33

7 ·33
= 99

231

99

231
= 1

3
+ 1

11
+ 1

231
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We notice that in every procedure the factor k is different. The first is k = 30 and it is obtained
with our method, the second is k = 12 and it is lower than the first and the third is k = 33 that
is higher than the first one. So we can state that the possible expansions are connected with
the coefficient used.

So, we propose some different ways and we made a comparison with our method.

Theorem 5.18. (A. Galletti e K.P.S. Bhaskara Rao [6]). The factorial of a natural number n is
practical.

Basing of this theorem we can say that exists at least one coefficient k for every initial
denominator b, that multiplied for the given fraction let us get a practical denominator. Un-
fortunately this method to find k has big disadvantage because it is true that it proves that
exist at least one k but does not care about the height of this number. For example, for our
method we reach:

a

b
= 7

10
and k = 3

Instead, using this theorem k would be 9! (which is 362.880), which is much greater than b ·k
(7 ·3 = 30).
For this reason we prefer to use our method based on theorems 5.14, 5.15 and 5.16 instead
of the theorem of A.Galletti and K.P.S Bahaskara Rao. Notice that we can prove that theorem
5.18 comes from our method to find k. In fact, for example:

9! = 9 ·8 ·7 ·6 ·5 ·4 ·3 ·2

9! = 27 ·34 ·5 ·7

So, a factorial number is the product of powers of the first prime numbers. For this reason it
is a practical number for theorem 5.16.

An other result:

Theorem 5.19. Let m be a practical number. If n is a integer such that 1 ≤ n ≤ σ(m)+ 1,
then mn is a practical number, where σ(m) denotes the sum of the positive divisors of m. In
particular for 1 ≤ n ≤ 2m, mn is practical.

This result becomes from Stewart paper [1], in particular this theorem appears, for exam-
ple, in [9] and it is the main tool to construct practical numbers. The first assertion follows
from Stewart’s structure theorem. Since m − 1 is a sum of distinct divisors of m, we have
m+(m−1) ≤σ(m) then 2m ≤σ(m) and therefore, if n ≤ 2m then n ≤σ(m) ≤σ(m)+1. (B.M.
Stewart, 1954); The difference between this result to find k and our method is that the first
one gave us the smallest number that multiplied for the initial denominator gets a practical
number and the one that we use does not do this. For example, using the same example
which we used before, for our method:

a

b
= 7

10
and k = 3
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and for B.M. Stewart method k would be the practical number greater than b
2 :

k >
b

2
⇒ k = 6

In conclusion none of this method give us all the expansion of a given irreducible proper
fraction and so our method, even if does not give us the minor possible k, is fine. Also our
strategy is fine because it has a great advantage: it always gives us at least a possible expan-
sion.
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5.20 The algorithm

The algorithm was written in C++ language, we wrote it because we needed to simplify and
make faster every expansion of a given fraction into sum of Egyptian fractions. To make it
happen the most important thing is to find all proper divisor of b, and then create a matrix
which dimensions are n and 2n −1 where n is the number of proper divisors of b. Here it is
an example of this matrix:

d1 d2 d3 d4

1 → 0 0 0 1
2 → 0 0 1 0
3 → 0 0 1 1
4 → 0 1 0 0
5 → 0 1 0 1
6 → 0 1 1 0
7 → 0 1 1 1
8 → 1 0 0 0
9 → 1 0 0 1

10 → 1 0 1 0
11 → 1 0 1 1
12 → 1 1 0 0
13 → 1 1 0 1
14 → 1 1 1 0
15 → 1 1 1 1

Each column of the matrix is a proper divisor of b starting from left with the smaller one,
and every row is a natural number starting from 1 until 2n −1 but written in binary code. For
example in the test matrix the last row corresponds to the natural number 15. Then with a
loop, we check for each row if the sum of only divisors whose cell is equal to 1, is equal to the
numerator. If it is true the program will print the expansion. Here there are many important
pieces of our code

• the search of the proper divisors of b [20]

[21]

30 for ( i n t i =1; i <b ; i ++){
i f (b%i ==0){

32 div_b [ n_div_b ]= i ;
n_div_b ++;

34 cout<<i < <" , " ;
}

36 }
cout<<endl ;
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• The creation of the matrix:
[22]

40 i n t q , k ;
i n t lung=pow( 2 , n_div_b )−1;

42 short casi [ lung ] [ n_div_b ] ;
for ( i n t i =0; i <lung ; i ++){

44 q= i +1;
for ( i n t j =n_div_b−1; j >=0; j −−){

46 k= j ;
i f (q==1){

48 casi [ i ] [ k ] = 1 ;
while ( k >0){

50 k−−;
casi [ i ] [ k ] = 0 ;

52 }
break ;

54 }
casi [ i ] [ j ]=q%2;

56 q=q/ 2 ;
}

58 }

• The expansion into Egyptian fraction

60 for ( i n t i =0; i <=lung ; i ++){
for ( i n t j =0; j <n_div_b ; j ++){

62 i f ( casi [ i ] [ j ]==1){
somma+=div_b [ j ] ; }

64 }
i f (somma==a ) {

66 cout<<a<<"/"<<b<<" = " ;
for ( i n t h=0; h<n_div_b ; h++){

68 i f ( casi [ i ] [ h]==1){
cout <<"1"<<"/"<<b/ div_b [h]<<" + " ;

70 }
}

72 cout<<endl ; }
somma=0;

74 }
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6 Geometric method (our solution)

We now present a graphic method to expand a given irreducible proper fraction.

6.1 Egyptian fractions 1
x + 1

y

We choose to first deal with those fractions that can be written as the sum of two distinct unit
fractions:

a

b
= 1

x
+ 1

y

where a, b, x, y are non-zero natural numbers.

6.2 Fractions sum
pr oduct

Let’s consider a fraction
s

p
where s and p are such that s = x + y and p = x · y , with x and y

natural numbers.

We observe that the sum
1

x
+ 1

y
is:

1

x
+ 1

y
= x + y

x y
= s

p

Example. Let
5

6
be the fraction we want to write as a sum of two unitary fractions. We

notice that
5 = 2+3 and 6 = 2 ·3

hence we have the case where
s

p
= 5

6
= 1

x
+ 1

y
= 1

2
+ 1

3
.

6.3 Fractions k·sum
k·pr oduct

Let’s consider the more general case of a fraction a
b where a and b are relatively prime, such

that

a

b
= 1

x
+ 1

y
= ka

kb

We want to find, if they exist as natural numbers, x and y satisfying the given condition,
once we have chosen a and b.
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We can express the problem as a system of equations:{
x + y = ka

x y = kb
(1)

We decide to analyse the problem from a geometric point of view, so that the two equa-
tions correspond respectively to a sheaf of parallel straight lines and a sheaf of hyperbolas on
the Cartesian plane (x, y). The solutions are the intersection points between the two curves,
with natural coordinates.

We notice that the solutions are positioned along a curve. If we change the value of k we
can see that the curve moves.
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At first it seems that in order to find the solution we have to consider all the values of
k, that are infinite, but we notice that actually we must consider only k > 0. If k is nega-
tive we obtain a couple (x;y) of discordant numbers because the intersection points belong
to the second and fourth quadrant of the Cartesian plane, but we want x and y to be posi-
tive, because the Egyptians did not know negative numbers so we decide not to accept this
case. [23]

Another thing that can be noticed is that the abscissa of the solution is never less than a
certain value. In fact, we find out that the geometric locus of the intersection points between
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the line x + y = ka and the hyperbola x y = kb is a homographic function:

y = bx

ax −b

and its asymptote is

x = b

a

which is exactly the value such that x > b

a
.

Furthermore, since the points of the geometric locus are symmetrical with respect to the

axis y = x we can consider just the range of the curve between the asymptote x = b

a
and the

intersection point of the homographic function y = bx

ax −b
with y = x, that has abscissa:

x = 2b

a

which means:

b

a
< x < 2b

a
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We can get to the same result by following an algebraic method, starting form the same
system of equations 1 {

x + y = ka

x y = kb

which gives the following equation:

x2 −kax +kb = 0 (2)

From this equation we obtain the coordinates [24] of the intersection points:(
ka −

p
k2a2 −4kb

2
;

ka +
p

k2a2 −4kb

2

)
[25] (3)

Hence the geometric locus of the intersection points between x + y = ka and the hyper-
bola x y = kb is:

y = 1

2

(
ax

ax −b
+

∣∣∣∣x(ax −2b)

ax −b

∣∣∣∣)
But we must impose some conditions:
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• k2a2 −4kb > 0 (3) because of the square root (∆≥ 0) and because we want x 6= y . The

result is k > 4b

a2
(we don’t consider k < 0).

We already know that (2)

k = x2

ax −b

so:
x2

ax −b
> 4b

a2

x > b

a

• 2x − ka < 0 for 2x − ka = −
p

k2a2 −4kb (3) must be coherent. The result is

k > 2x

a
.

We already know that (2)

k = x2

ax −b

so:
x2

ax −b
> 2x

a

ax2 −2bx

ax −b
< 0

These conditions impose that [26] :

b

a
< x < 2b

a

We notice that for these values the argument of the absolute value in the equation of the
geometric locus is always negative, hence the final equation of the geometric locus is:

y = bx

ax −b
∧ b

a
< x < 2b

a

which is exactly the same relation that we found out using the geometric method.

After finding the values x ∈ N0 of the geometric locus that satisfy the condition
b

a
< x <

2b

a
we need to check if the corresponding y is natural.
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Theorem 6.4. Let
a

b
be an irreducible proper fraction, then it can be expanded as sum of two

distinct unit fractions
1

x
+ 1

y
, with 0 < x < y, if

b

a
< x < 2b

a
∧ y = bx

ax −b

Example: Let’s consider
a

b
= 5

18
that we want to write as

5

18
= 1

x
+ 1

y
.

The integer numbers x such that
b

a
< x < 2b

a
that is

18

5
< x < 36

5
are:

• x = 4 → y = bx

ax −b
= 36, acceptable

• x = 5 → y 6∈N0

• x = 6 → y = bx

ax −b
= 9, acceptable

• x = 7 → y 6∈N0

So:
5

18
= 1

4
+ 1

36
= 1

6
+ 1

9

6.5 Egyptian fractions 1
x + 1

y + 1
z

We tried to retrace an analogous procedure for the expansion of a fraction in a sum of three
unit fractions.

a

b
= 1

x
+ 1

y
+ 1

z
= ka

kb

Again, we can express the problem as a system of equations:{
x y +xz + y z = ka

x y z = kb

Each equation represents a surface on the Cartesian space (x, y , z) that changes for dif-
ferent values of k. From the system we determine the geometric locus of the solutions:

z = bx y

ax y −b(x + y)
(4)
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In this case we need some conditions on x, y , z to be able to solve the problem. We

choose to impose x < y < z, expand the fractions
a

b
starting from the greatest unitary frac-

tion and following a descending order. This choice does not exclude any solutions, since
imposing a different order of x, y , z would allow to find the same fractions in a different
order, that is still acceptable thanks to the commutative property of the addition.

From the geometric locus (4) if we
want x, y, z > 0 then:

ax y −b(x + y) > 0

⇒ y > bx

ax −b

After, since the points of the first
quadrant are symmetrical with
respect to the y = x axis, we are
allowed to consider just the points
that have x < y and satisfy the previ-
ous condition.

We can express z in 4 as a function of
x and y and analise x < z:

bx y

ax y −b(x + y)
> x

ax2 y −bx2 −2bx y < 0

ax y −bx −2by < 0

⇒ y < bx

ax −2b
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Then we proceed analising y < z:

bx y

ax y −b(x + y)
> y

ax y2 −by2 −2bx y < 0

ax y −by −2bx < 0

⇒ y < 2bx

ax −b

Representing on the same Cartesian plane all the graphs that we obtained, we can notice
that the points (x,y) that satisfy all the conditions belong to a specific area, hence the corre-
sponding coordinates z are positioned in a specific region of the space.
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The area of the points (x,y) that satisfy all the conditions is not limited, but we must con-
sider only the points with integer coordinates, therefore we are not considering an infinite
number of points.

The graph shows that:

b

a
< x < 3b

a
∧ bx

ax −b
< y < 2bx

ax −b

which means that for every natural value of x we have to check if a natural value of y
exists such that z is natural.

Theorem 6.6. Let
a

b
be a irreducible proper fraction, then it can be expanded as sum of three

distinct unit fractions
1

x
+ 1

y
+ 1

z
with 0 < x < y < z, if

b

a
< x < 3b

a
∧ bx

ax −b
< y < 2bx

ax −b
∧ z = bx y

ax y −b(x + y)

Example: Let’s consider
a

b
= 4

5
that we want to write as

4

5
= 1

x
+ 1

y
+ 1

z
.

The integer numbers x such that
b

a
< x < 3b

a
that is

5

4
< x < 15

4
are:
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• x = 2 −→ 10

3
< y < 20

3

→ y = 4 → z = bx y

ax y −b(x + y)
= 20, acceptable

→ y = 5 → z = bx y

ax y −b(x + y)
= 10, acceptable

→ y = 6 → z 6∈N0

• x = 3 −→ 15

7
< y < 30

7

→ y = 3 → z 6∈N0 (not acceptable because y = x)

→ y = 4 → z 6∈N0

So:
4

5
= 1

2
+ 1

4
+ 1

20
= 1

2
+ 1

5
+ 1

10

6.7 Egyptian fractions 1
x1
+ 1

x2
+ ...+ 1

xn
: a general method

We tried to generalise the same method for the expansion of a fraction in a sum of n unit
fractions:

a

b
= 1

x1
+ 1

x2
+ ...+ 1

xn
=

n∑
i=1

1

xi
= ka

kb

where the fractions are displaced in decreasing order (0 < x1 < x2 < ... < xn).
Again, we can express the problem as a system of equations that are represented by ob-

jects in the n-dimensions Cartesian space:
∑n

i=1
1
xi

(∏n
j=1 x j

)
= ka∏n

j=1 x j = kb
(5)

Hence:

xn = b

a −b
∑n−1

i=1
1
xi

(6)

That we can see is coherently:

1

xn
=

a −b
∑n−1

i=1

1

xi

b
= a

b
−

n−1∑
i=1

1

xi
(7)
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We conclude that, similarly to what occurs for n = 2 and n = 3, in the most general case:

b

a
< x1 < nb

a
∧ b

a −b( 1
x1

)
< x2 < (n −1)b

a −b( 1
x1

)
∧ ...

∧ b

a −b
(∑n−2

i=1
1
xi

) < xn−1 < 2b

a −b
(∑n−2

i=1
1
xi

)
therefore:

Theorem 6.8. Let
a

b
be a irreducible proper fraction, then it can be expanded as sum of n

distinct unit fractions
1

x1
+ ...+ 1

xn
, with x0 < x1 < ... < xn , (x0 = 0), if, for j = 1, ...n −1

max

x j−1,
b

a −b
∑ j−1

i=1
1
xi

< x j < (n +1− j )b

a −b
∑ j−1

i=1
1
xi

∧ xn = b

a −b
∑n−1

i=1
1
xi

Proof. Given n numbers 0 < x1 < x2 < ... < xn−1 < xn , we proved above that

xn = b

a −b
∑n−1

i=1
1
xi

Now, from xn−1 < xn then

xn−1 < b

a −b
∑n−1

i=1
1
xi

⇒ axn−1 −bxn−1 ·
n−2∑
i=1

1

xi
−b < b

⇒
(

a −b
n−2∑
i=1

1

xi
)

)
xn−1 < 2b ⇒ xn−1 < 2b

a −b
∑n−2

i=1
1
xi

Now, from xn−2 < xn−1 then

xn−2 < xn−1 < 2b

a −b
∑n−2

i=1
1
xi

⇒ xn−2 < 2b

a −b
∑n−2

i=1
1
xi

and in the same way

xn−2 < 3b

a −b
∑n−3

i=1
1
xi

we continue in this way up x1, in fact x1 < x2 < (n−1)b
a−b( 1

x1
)

and so

x1 < (n −1)b

a −b( 1
x1

)
⇒ x1 < nb

a
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with this procedure it is possible to bound above all the variables.
Starting from xn > 0 we get

b

a −b
∑n−1

i=1
1
xi

> 0 ⇒
n−1∑
i=1

1

xi
< a

b

⇒ 1

xn−1
< a

b
−

n−2∑
i=1

1

xi
⇒ xn−1 > b

a −b
∑n−2

i=1
1
xi

Now, xn−1 > 0 and

xn−1 < 2b

a −b
∑n−2

i=1
1
xi

⇒ 2b

a −b
∑n−2

i=1
1
xi

> 0

⇒
n−2∑
i=1

1

xi
< a

b
⇒ xn−2 > b

a −b
∑n−3

i=1
1
xi

continuing like this until x1 > b

a
. Then all the variables are bounded below.

Therefore all the inequalities of the theorem are valid for all j = 1, ..n−1 remembering that∑0
i=1

1
xi

is an empty sum, or nullary sum, that is a summation where the number of terms is
zero. By convention the value of any empty sum of numbers is the the neutral element of
addition that is zero.

We use the function max

x j−1,
b

a −b
∑ j−1

i=1
1
xi

 as the left bound in order to eliminate

unacceptable cases from the condition x1 < x2 < ... < xn .
Conventionally we indicate x0 = 0 to keep the correct formula correct for all indices j .

Example: Let’s consider a
b = 3

4 that we want to write as 3
4 = 1

x1
+ 1

x2
+ 1

x3
+ 1

x4
which means

n = 3. Let’s proceed by:

• Calculating the range of possible x1 values as:

4

3
< x1 < 4 ·4

3

• Determining the possible integer values of x1 and calculating for each of them the pos-
sible ranges of x2 values as:

4

3−4
(

1
x1

) < x2 < 3 ·4

3−4
(

1
x1

) [27]
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• Determining the possible integer values of x2 and calculating for each possible couple
of x1, x2 the possible range of x3 as x1 < x2 < x3:

4

3−4
(

1
x1

+ 1
x2

) < x3 < 2 ·4

3−4
(

1
x1

+ 1
x2

)
• Determining the possible integer values of x3 and calculating for each possible triplet

of x1, x2, x3 the values of x4 by applying the formula 6 as:

x4 = 4

3−4( 1
x1

+ 1
x2

+ 1
x3

)

or (7):
1

x4
= 3

4
−

(
1

x1
+ 1

x2
+ 1

x3

)
• The integer values of x4 mark the valid quadruplets of x1, x2, x3, x4 that satisfy

1

x1
+ 1

x2
+ 1

x3
+ 1

x4
= 3

4

Following these steps we can find 27 solutions for the problem:

3
4 =

= 1
2 + 1

5 + 1
21 + 1

420 = 1
2 + 1

5 + 1
22 + 1

220 = 1
2 + 1

5 + 1
24 + 1

120

= 1
2 + 1

5 + 1
25 + 1

100 = 1
2 + 1

5 + 1
28 + 1

70 = 1
2 + 1

5 + 1
30 + 1

60

= 1
2 + 1

5 + 1
36 + 1

45 = 1
2 + 1

6 + 1
13 + 1

156 = 1
2 + 1

6 + 1
14 + 1

84

= 1
2 + 1

6 + 1
15 + 1

60 = 1
2 + 1

6 + 1
16 + 1

48 = 1
2 + 1

6 + 1
18 + 1

36

= 1
2 + 1

6 + 1
20 + 1

30 = 1
2 + 1

6 + 1
21 + 1

28 = 1
2 + 1

7 + 1
10 + 1

140

= 1
2 + 1

7 + 1
12 + 1

42 = 1
2 + 1

7 + 1
14 + 1

28 = 1
2 + 1

8 + 1
9 + 1

72

= 1
2 + 1

8 + 1
10 + 1

40 = 1
2 + 1

8 + 1
12 + 1

24 = 1
2 + 1

9 + 1
12 + 1

18

= 1
2 + 1

10 + 1
12 + 1

15 = 1
3 + 1

4 + 1
7 + 1

42 = 1
3 + 1

4 + 1
8 + 1

24

= 1
3 + 1

4 + 1
9 + 1

18 = 1
3 + 1

4 + 1
10 + 1

15 = 1
3 + 1

5 + 1
6 + 1

20
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6.9 Observation

This method finds the expansions only given a number of fractions of the sum but has the
advantage that it finds all possible expansions in this case.

7 Comparison

Now we want to compare the different methods that we have described in previous chapters.
That is we will expand the same proper fraction with the four methods and will analyse the
different results.

Let the proper fraction be
7

9

1. Fibonacci’s method
7

9
= 1

2
+ 1

4
+ 1

36

• With this method we expand every proper fraction
a

b
in only one way.

• The numbers of unit fractions of the expansion is less than or equal to the numer-
ator a.

• The denominator can grow quite huge.

2. Golomb’s method
7

9
= 1

2
+ 1

6
+ 1

12
+ 1

36

• With this method we expand every proper fraction
a

b
in only one way.

• The numbers of unit fractions of the expansion is less than or equal to the numer-
ator a.

• The Golomb’s algorithm is better than the Fibonacci-Sylvester algorithm in the
sense that the in this case the denominators are guaranteed to be less than b(b −
1).

3. Method of practical numbers
7

9
= 1

2
+ 1

6
+ 1

9

• With this method we expand every proper fraction
a

b
in at least one way, as many

ways as there are the different ways in which the numerator can be written as the
sum of denominator divisors. The possible expansions are connected with the
coefficient k used (k = 2 if the denominator is a practical number), if we choose
more numbers we will have more expansions.
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• The numbers of unit fractions is less than or equal to the number of divisor of b
or kb.

• The denominators of the distinct unit fractions are less than or equal to the de-
nominator b or kb.

We recall that if you have the prime factorization of the number n, then to calcu-
late how many divisors it has, you take all the exponents in the factorization, add
1 to each, and then multiply these "exponents + 1"s together.

4. Geometric method

- two unit fractions: impossible

- tre unit fractions:
7

9
= 1

2
+ 1

4
+ 1

36

7

9
= 1

2
+ 1

6
+ 1

9

• With this method we find all the expansion of every proper fraction
a

b
fixed the

number of unit fractions.

• The numbers of unit fractions must be fixed previously.

• We find all the expansions so the growing of the denominator is not determinable.

8 The tree of fractions

We have already noticed in the previous chapters that the identity

1

n
= 1

n +1
+ 1

n(n +1)

holds for all n ∈N0. This equality is known as the "splitting relation".

Therefore, for example,
1

2
= 1

3
+ 1

6
or

1

3
= 1

4
+ 1

12
and

1

6
= 1

7
+ 1

42
.

We could go on and we will find a lot of fractions that we can arrange in a tree shape.

1

2
1

3

1

6
1

4

1

12

1

42

1

7
1

5

1

20

1

13

1

156

1

1806

1

43

1

56

1

8
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... ... ... ... ... ... ... ...

Our goal is to find a formula to calculate the denominator of a fraction of the tree by
knowing its position, that is the number of its row (r ) and the number of its column (c).

The formula is: For all r,c ∈N0 with 1 ≤ c ≤ 2r−1

A (r,c) =
{

2 if r = c = 1[
A

(
r −1,

⌈ c
2

⌉)+1
] · [A

(
r −1,

⌈ c
2

⌉)]p if r > 1

with

p = 1−
{

c + 1

2
· sgn(r −2) ·

[
sgn

(
c −2r−2 − 1

2

)
+1

]}
mod 2

Now we want to explain how we found it.

8.1 The formula

Looking for the formula above we met several problems:

• the recursion of the formula;

• the need to operate differently with the unit fractions
1

n +1
and

1

n(n +1)
;

• the symmetry of the tree;

• the non-symmetry in the second row of the tree.

8.2 The recursion of the formula

Recursion means that in order to calculate one element of the tree we have to know the
elements in the previous rows.

Each element of the tree is obtained from an element of the previous row ⇒ r −1. The
two-by-two elements are obtained from the one in the previous row in the middle of them
⇒ ⌈ c

2

⌉
that is we used the ceiling function [28] .

It is necessary to start this process therefore we fixed at first A(1,1) = 2 and then A(r, s)
must be a function of A

(
r −1,

⌈ c
2

⌉)
so

A (r,c) =
{

2 if r = c = 1

f
[

A
(
r −1,

⌈ c
2

⌉)]
if r > 1
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8.3 The need to operate differently with the unit fractions
1

n +1
and

1

n(n +1)

Now we have to find the function f . We notice that sometimes f
[

A
(
r −1,

⌈ c
2

⌉)]
has to give

A
(
r −1,

⌈ c
2

⌉)+1 and sometimes
[

A
(
r −1,

⌈ c
2

⌉)+1
] · [A

(
r −1,

⌈ c
2

⌉)]
That is, in the second case we have to multiply by the factor

[
A

(
r −1,

⌈ c
2

⌉)]
whereas in

the first it is not necessary.
Therefore we put an exponent p in this factor which becomes 0 or 1.
To obtain this exponent we use a new function: mod, which gives the rest of the euclidean

division between two integer numbers.
So the formula becomes:

A (r,c) =
[

A
(
r −1,

⌈c

2

⌉)
+1

]
·
[

A
(
r −1,

⌈c

2

⌉)]p

with p = 1− c mod 2.

8.4 The symmetry of the tree

With the second formula we get a correct tree:

1

2
1

3

1

6
1

4

1

12

1

7

1

42
1

5

1

20

1

13

1

156

1

43

1

1806

1

8

1

56

... ... ... ... ... ... ... ...

But to have a more "elegant" tree we could build it in a symmetrical way. This symmetry
is get by the location of the greatest fractions on the left for the first 2r−2 elements of the tree
and on the right for the element from 2r−2 +1 to 2r−1.

Therefore we have to change the exponent p before and after 2r−2. We want the follows
exponents:

...
0 1 1 0

0 1 0 1 1 0 1 0
0 1 0 1 0 1 1 0 1 0 1 0

...
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We are looking for a function that gives 0 or 1. We know the function

x

|x| =
{
−1 if x < 0

+1 if x > 0

and we can change it with a translation and a dilatation and we get

1

2
·
(

x

|x| +1

)
=

{
0 if x < 0

+1 if x > 0

The change of the value of the exponent must happen after the column 2r−2 that is if

c −2r−2 − 1

2
< 0 then the exponent has to be 0 otherwise has to be 1. Then the function is

1

2
·
(

c −2r−2 − 1
2∣∣c −2r−2 − 1
2

∣∣ +1

)
=


0 if c −2r−2 − 1

2
< 0

+1 if c −2r−2 − 1

2
> 0

[29]

So the formula becomes:

A (r,c) =
[

A
(
r −1,

⌈c

2

⌉)
+1

]
·
[

A
(
r −1,

⌈c

2

⌉)]1−
[

c+ 1
2 ·

(
c−2r−2− 1

2|c−2r−2− 1
2 |+1

)]
mod 2

8.5 The non-symmetry in the second row of the tree

The last problem is that the exponents in the second row are 0 and 1 hence they are not
symmetric.

0 1
0 1 1 0

0 1 0 1 1 0 1 0
... ... ... ... ...

Then the last work is to correct the formula to obtain the non-symmetry only in the sec-
ond row but to keep symmetry in the remaining rows.

Therefore we need a function that changes the exponents only from the second line on-
wards.

We use the sign function:

sg n (x) =


−1 if x < 0

0 if x = 0

+1 if x > 0
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Then we introduce a factor that is 0 or 1 to produce a change of the order of the fractions
only from the second rows onwards. This factor is (r −2). So

sg n (r −2) =


−1 if r < 2 (it never happens)

0 if r = 2

+1 if r > 2

The case r < 2 it never happens in our tree. If r = 2 the symmetry is cancelled, in the
other case the symmetry remain because the result of this function is equal to 1.

The formula now becomes:

A (r,c) =
[

A
(
r −1,

⌈c

2

⌉)
+1

]
·
[

A
(
r −1,

⌈c

2

⌉)]1−
[

c+ 1
2 ·sgn(r−2)·

(
c−2r−2− 1

2|c−2r−2− 1
2 |+1

)]
mod 2

At last we noticed that, for x 6= 0 sgn(x) = x

|x| and then we can transform the exponent

into the final form:

1−
{

c + 1

2
· sgn(r −2) ·

[
sgn

(
c −2r−2 − 1

2

)
+1

]}
mod 2

8.6 The expansion of the natural number

With the result of the previous section we can expand the number 1 into a selected number
of unit fraction.

Indeed 1 = 1

2
+ 1

2
so we can expand the second addend knowing that the sum of all the

fraction in the second row of the tree is
1

2
. In this way we expand 1 into three unit fraction.

1 = 1

2
+ 1

2
= 1

2
+ 1

3
+ 1

6

Also the sum of the fraction in the third row is equal to
1

2
so we can use this row too but

this time what we obtain is an expansion with five unit fraction.

1 = 1

2
+ 1

2
= 1

2
+ 1

4
+ 1

12
+ 1

42
+ 1

7

The sum of the fraction in a random row is always equal to
1

2
so we can expand 1 in

infinite way but the number of unit fraction change.
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1

2
1

3
+ 1

6
1

4
+ 1

12
+ 1

42
+ 1

7
1

5
+ 1

20
+ 1

13
+ 1

156
+ 1

1806
+ 1

43
+ 1

56
+ 1

8
... ... ... ... ... ... ... ... ...

+1

2
= 1

+1

2
= 1

+1

2
= 1

+1

2
= 1

1

2
can be obtained also summing different part of different row of the tree.

For example:

1 = 1

2
+ 1

2
= 1

2
+

(
1

3
+ 1

6

)
= 1

2
+

(
1

4
+ 1

12

)
+ 1

6
= 1

2
+

(
1

5
+ 1

20

)
+ 1

12
+ 1

6

If we sum two rows the result is 1 because the sum of each row is equal to
1

2
.

For instance if we sum the first and the second row:(
1

3
+ 1

6

)
+

(
1

4
+ 1

12
+ 1

42
+ 1

7

)
= 1

2
+ 1

2
= 1

In the same way if we sum a pair number of rows we will get a natural number.
Let n be the natural number that we want to get then the number of rows r that we have

to sum is 2n.
The choosing of the rows is irrelevant: the result is always the same if I keep a fixed num-

ber of rows.
This brings the consequence that also all the number inQ+

0 can be expanded.
Indeed an improper fraction is always the sum a natural number plus a proper fraction,

this last can be expanded with the method we prefer. The only restriction is the choice of
rows without unit fractions used for the expansion of the proper fraction.

Answer:
All the natural numbers can be expanded into distinct unit fractions.
Also the improper fractions can be expanded into distinct unit fractions.
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9 Notes d’édition

[1] Il faut avoir b > 0
The hypothesis b > 0 is needed
[2] Il est important de remarquer que cette inégalité n’est possible que parce que

k > 1 et donc k −1 > 0.
Note that this inequality is true only because k > 1 and hence k −1 > 0.
[3] Ce résultat prouve d’abord que les numérateurs seront décroissants, puis que

les dénominateurs sont strictement croissants (k ≥ 2) et qu’avec des numérateurs
strictement décroissants et des dénominateurs croissants, les fractions décroissent
strictement.
From this result we deduce first that the sequence of numerators is decreasing; then
that the sequence of denominators is strictly decreasing (for k ≥ 2), and finally that
with numerators decreasing strictly and denominators increasing, the sequence of
fractions is strictly decreasing
[4] Cette démonstration pose problème : si la suite des numérateurs est stricte-

ment décroissante et positive, elle ne peut prendre qu’un nombre finie de valeurs.
Que ce passe-t-il lorsqu’elle les a toutes atteintes ? En fait il aurait fallut prendre une
suite de numérateurs simplement décroissante. L’algorithme s’arrête alors lorsque
deux fractions successives sont égales, ce qui arrive au plus tard, lorsque toutes
les valeurs ont été prises . Les auteurs l’ont bien senti quand ils écrivent "the only
way this method could go wrong would be if two of the fractions were equal". En
fait il ne s’agit pas du cas où les fractions sont égales mais du cas où les numéra-
teurs ka −b et a sont égaux, cas qui a été exclu. Et dans ce cas on a effectivement
ka−b = a,b = (k−1)a et 1/k−1 = a/b. La difficulté trouve son origine dans la défi-
nition de k dans la démonstration du théorème 3.3. Elle n’a pas été formalisée ("1/k
is the largest unit fraction that we can subtract from a/b"). En posant k = [(b/a)]+1
alors k −1 < b/a =< k et 1/k =< a/b =< 1/(k −1). La dernière inégalité n’est alors
plus stricte mais large et permet d’avoir une suite de numérateurs décroissante qui
sera constante si 1/k −1 = a/b.
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There is a "problem" in this proof: if the sequence of numerators is strictly de-
creasing and positive, then the numerators are in a finite set. has gone through
all these possible values ? In fact the sequence of numerators should be dereasing
(but not strictly decreasing). The the algorithm will stop when two fractions are
equal, and this will happen at least when all the possible values have been com-
puted. The authors were aware of that as they write "the only way this method
could go wrong would be if two of the fractions were equal". Indeed it is not the
case when the fractions are equal but it is the case when the numerators ka −b and
aar eequal ; thi si snot possi blebyhy pothesi s. And in this case, we get ka − b =
a,b = (k −1)a and 1/k −1 = a/b. The problem lies in the definition of Theorem 3.3.
This proof is not actually written ("1/k is the largest unit fraction that we can subtract
from a/b"). If k = [(b/a)]+1 then k−1 < b/a =< k and 1/k =< a/b =< 1/(k−1). The
last inequality is no,more a stric inequality: so we can have a decreasing sequence of
numerators which will constant if 1/k −1 = a/b.
[5] Cette notation représente le nombre entier juste après b/a. Cette fonction est

présentée p 39 : c’est la "ceiling function", ou fonction plafond. Attention à ne pas
la confondre avec la partie entière ("floor function", fonction palier) où les crochet
sont en bas. Elle est introduite p 12.
This notation is for the integer number which is the first one after b/a. This func-
tion is given p 39: it is the "ceiling function". It is different from the "floor function"
introduced p 12.
[6] Avec les conditions posées, ce sont des équivalences ce qui est plus explicite si

on part de la définition de k . On peut choisir soit b/a < k =< b/a + 1 ou k − 1 ≤
b/a < k
In the given frame, these are equivalence: this can be seen easily if we look at the
defintion of k . We ca choose b/a < k =< b/a +1 or k −1 ≤ b/a < k
[7] Il est sous entendu que la fraction 791/3517 est irréductible. C’est le cas en

remarquant que 3517 est un nombre premier.
The fraction 791/3517 is irreducible: 3517 is a prime number.
[8] Attention : cette recherche peut sembler simple mais quelles valeurs de p et k

prendre pour a = 5 et b = 7 ?
This search looks easy, but is it ? Find p and k for a = 5 and b = 7
[9] La conclusion est ici un peu hâtive. Si les résultats permettent de dire qu’il y

a en a un grand nombre, la méthode de Fibonacci n’en donne qu’un nombre fini.
Il faudrait justifier que l’écriture obtenu grâce au théorème 1.3.1 ne finisse pas par
donner des écritures que l’on a déjà.
The authors jump to the conclusion quickly ! If the results allow to say that we have
many possibilities, Fibonacci method will not give all of them. One should explain
why the result given in Theorem 1.3.1 will not lead us back to what we have found
before.
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[10] Exercice : Comment ont été trouvées les autres décompositions de 3/7 et
4/49 ?
Exercise : how do we get the other decompositions of 3/7 and 4/49?
[11] Cette existence est garantie par le théoréme de Bézout qui est donné plus loin ;

a et b sont considérés comme premiers entre eux.
This is true because of Bézout Theorem (see a little below in the text of the article); a
and b are coprimes.
[12] gcd (great common divisor) est la notation anglaise de pgcd.

[13] L’existence de k est justifiée plus loin.
See a litle below in the paper to understand why k exists.
[14] La démonstration considère les découpages suivants qui permettent de re-

couvrir tous les nombres inférieurs à p2 :

• les nombres inférieurs à p1 (donc à p2 )

• les nombres inférieurs à p1p2 multiples de p1 : ils sont de la forme np1 avec
1 ≤ n ≤ p2

• les nombres compris entre deux multiples de p1 : ils sont de la forme
p1n+nombre b inférieur à p1.

The proof looks at the following cases (which give all the cases for a number to be less
than p2):

• integers ≤ p1 (so ≤ p2 )

• integers≤ p1p2 multiple of p1: they are of the form np1 with 1 ≤ n ≤ p2

• integers between two multiples of p1: they are of the form p1n+X number of
b ≤ p1.

[15] On noterait plutôt "n compris entre p1n1 et p1(n1 +1)"
We should write "n is between p1n1 and p1(n1 +1)"
[16] L’utilisation précédente des ensembles infinis était intuitive. Ces propriétés

en sont une théorisation mais ne sont pas utilisées. La démonstration est induite
par le théorème 5.16 qui permet de montrer que cet ensemble des nombres pra-
tiques ne peut être fini : le produit des premiers nombres premiers est pratique.
Or il y a autant de ces produits que de nombres premiers (à chaque fois que l’on
trouve un nombre premier on le multiplie au dernier produit). Ainsi il y a au moins
autant de nombres pratiques que de nombres premiers. Ce dernier ensemble étant
de cardinal infini, celui des nombres pratiques l’est aussi.
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Mais pour ce raisonnement on sollicite un autre théorème qui dit que tout ensem-
ble contenant un ensemble infini est infini. Le théorème 5.12 va plus loin en disant
qu’il y a autant de nombres pratiques que de nombres entiers. C’est ce que l’on
appelle un ensemble dénombrable.
Here is used the notion of infinite sets, intuitively. From Theorem 5.16, we can deduce
that the set of practical numbers is not finite: the product of 2 practical numbers is
practical. We know that we have as many prime numbers as practical numbers. The
set of prime numbers is infinite: so is the set of practical numbers. You need for this
to use an important Theorem: a set containing an infinite set is infinite. In Theoem
5.12, we get more: there are as many practical numbers as integer numbers. The set
of practical numbers is countable.
[17] q < p vient d’une hypothèse qui n’est pas clairement explicitée : le nombre

n que l’on décompose est < pT . En effet on souhaite montrer que tout nombre
inférieur à pT se décompose en somme de diviseurs de pT . On a alors k1p < pT =
p1 · · · .pn .pn+1 donc pn+1q + r < p1 · · ·pn+1 et pn+1q < p1 · · ·pn+1, (r > 0) ainsi q <
pp1 · · ·pn = p
To understand why q < p, we need to notice that n < pT (this not clearly said). In-
deed we want to prove that any integer less than pT can be decomposed in a sum of
divisors of pT . We get then k1p < pT = p1 · · · .pn .pn+1 hence pn+1q + r < p1 · · ·pn+1

and pn+1q < p1 · · ·pn+1, (r > 0),fromwhich we get q < pp1 · · ·pn = p
[18] Ici n est inférieur à d p, puisqu’il s’agit d’étudier si les nombres inférieurs à ce

produit peuvent se mettre sous forme de somme de diviseurs de d p. Ainsi
n = k1p + r < d p
0 =< r < (d −k1)p
Et d −k1 > 0 La seconde inégalité n’est pas nécessaire pour la suite. Mais on peut
tout de même se demander si k2 = k1 +1 est nécessairement strictement inférieur
à d . L’inégalité au sens large s’obtient comme pour k1.
Here n is less than d p, as here we want to know if any number less than d p can be
written as a sum of divisors of d p si les nombres We have
n = k1p + r < d p
0 =< r < (d −k1)p
And d −k1 > 0 The second inequality is not used in the paper. But is it true that any
k2 = k1 +1 is strictly less than d. The proof of k2 is less d is similar to the proof of the
same result for k1 than For k1

[19] Evident si on a bien en tête que n < d p.
To prove this result very quickly, remember that n < d p
[20] Les "proper divisors" de b sont les diviseurs de b différents de b.

A "proper divisor" of b is a divisor of b not equal to b.
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[21] Quelques explications :
b%i : reste de la division euclidienne de b par i
div_b : liste
n _div _b : compteur qui à la fin contiendra le nombre de diviseurs de b.
cout<<i<<","; : afficher i,
Some hints:
b%i: remainder of the euclidian division of b by i
div_b: list
n _div _b: index which at the end gives the number of divisors of b.
cout<<i<<","; : print i,
[22] Quelques explications :

lung : le nombre de lignes de la matrice2nb de diviseurs de b −1
casi : la matrice
Some hints:
lung: it is the number of lines of the matrix 2nb de diviseurs de b −1
casi: the matrix
[23] C’est de la figure juste en dessous qu’il s’agit

It concerns the figure just below
[24] Ce sont les abscisses des deux points d’intersections, et non leurs coordonnés

This gives the x- coordinates of the intersection points, not their coordinates
[25] Pour trouver ce résultat, k a été remplacé dans (3) par son expression en fonc-

tion de x que l’on obtient à l’aide de (2)
To find this result, k is replaced in (3) by its expression in terms of x which is deduced
from (2)
[26] Ce résultat s’obtient en étudiant le signe de l’expression (ax2 −2bx)/(ax −b)

This result is obtained by studying the sign of (ax2 −2bx)/(ax −b)
[27] Cette inégalité est possible car x1 < x2. Cette hypothèse est donc essentielle

pour le raisonnement.
This inequality can happen as x1 < x2. So this hypothesis is essential .
[28] La fonction "ceiling" est la fonction qui associe à un nombre réel, l’entier qui

lui est juste supérieur. Elle a déjà été utilisée auparavant.
"Ceiling" is the function which gives for any real number the first integer number
bigger than the real number. It has been used already in the article.
[29] Cette fonction a donc la valeur 0 pour les coefficients avant le milieu de la

ligne et 1 après.
This function takes the value 0 for the coefficients before the middle of the line, and
the value 1 after.
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